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Abstract—This paper proposes an optimal fusion method for
the magnitude and phase of clutter-suppression residuals in
distributed synthetic aperture radar (SAR)-aerial moving target
indication. In a distributed radar system with N A/ -channel
SARs, the proposed approach first estimates the magnitude of
M-channel clutter-suppression residuals and the interferometric
phase between the first and last 1/ —1-channel clutter-suppression
residuals in each SAR as local tests. Based on the statistical
estimation results, the receiver operator characteristic metrics
are predicted, enabling the local detection by combining the
magnitude and phase tests under a given probability of false
alarm for each SAR. Finally, a global detection framework is
developed to optimally fuse the local decisions from the N SARs.
Simulation results are presented to validate the effectiveness in
detecting weak targets.

Index Terms—Distributed radar, aerial moving target detec-
tion, clutter-suppression residual’s phase, optimal fusion

I. INTRODUCTION

In synthetic aperture radar (SAR) aerial moving target
indication (AMTI), clutter received from ground significantly
spreads in Doppler due to the high platform speed, thereby
masking moving targets. SAR systems generally deploy an
antenna array with multiple phase centers along the track
direction to suppress the ground clutter and detect weak
moving targets in the endo-clutter region [1]-[3]. In practice,
ground clutter is often heterogeneous, leading to a high prob-
ability of false alarm (Pfa) in many existing magnitude-based
detection methods [4], [5]. Moreover, for aerial moving targets,
such as unmanned aerial vehicles, the achievable coherence
accumulation interval (CPI) is limited within the antenna’s
main lobe, resulting in a low signal-to-clutter-plus-noise ratio
(SCNR), which poses significant challenge for target detection.

Existing solutions to SAR-AMTI in heterogeneous environ-
ments can be divide into two categories. The first focuses
on reducing false alarms by improving clutter suppression
performance [6]-[9]. The second explores different metrics
to increase the dissimilarity between heterogeneous clutter
and targets [10]-[16]. With the along-track interferometry
(ATT) SAR techniques [10], [11], two-step detectors [12], and
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Fig. 1. Geometric relationship in the distributed SAR-AMTI system.
joint metrics combining the magnitude and phase of SAR
interferograms [13] have been shown to improve the minimum
discernible velocity (MDV) of targets. However, the ATI
phases of low-SCNR targets are often affected by strong clutter
signals, increasing the minimum discernible SCNRs required
for successful target detection. Detectors incorporating the
Degree of Radial-Velocity Consistency (DRVC) test [14] and
those addressing filtering loss [15] have achieved improved
minimum detectable SCNRs under heterogeneous conditions.
Nevertheless, these methods often struggle when detecting
targets with minimal residuals after clutter suppression, par-
ticularly those with small radial velocities.

Distributed multichannel AMTI-SAR system, which em-
ploys several multi-channel SARs with a large spacing, can
capture target information from different observation angles
and provide increased spatial degrees of freedom (DoF) [17]-
[19]. In this paper, a novel detector is proposed that optimally
fuses the magnitude and phase of clutter-suppression residuals
in distributed SAR-AMTI. Firstly, a two-step local detector
is designed in each SAR by cascading the magnitude and
interferometric phase tests. Next, global detection is achieved
by optimally fusing these local detection decisions. Simula-
tion results validate its effectiveness in detecting low-SCNR
targets. Notations: T, , and H represent the transposition, the
conjugate operation, and the complex conjugate transposition,
respectively. arg[-]™ - denotes the phase of a complex number
within the 27 cycle, and i is the imaginary unit with i = —1.

II. SIGNAL MODEL OF DISTRIBUTED RADAR SYSTEM

Consider a distributed AMTI-SAR system consisting of
N M-channel SARs, where the physical spacing between
any two adjacent channels in a SAR is d. The geometric



relationship between this AMTI-SAR systems and an aerial
moving target is shown in Fig. 1. During a CPI, SAR platforms
move at velocities vpy, vp2, -+ , UpnN, rESpectively, and operate
in a side-looking mode. For the target with velocity v, the
radial velocity observed from the n-th SAR is denoted as
Urn, m = 1,2,--- ) N. Suppose that each SAR transmits the
orthogonal electromagnetic waves towards the same region,
and receives echoes independently. After performing SAR
imaging, platform motion compensation, and image regis-
tration and calibration, M SAR images with well-aligned
coordinates are obtained for each SAR. Next, these SAR
images are matched spatially based on their positions. For
the n-th SAR, the complex signal in the pixel k& of the m-
th channel is denoted as z, .,(k), where m = 1,---, M,
n=12--- N,and k=1,.---, K. As shown in Fig.1, radar
echoes in a pixel inevitably contain ground clutter. Therefore,
a binary hypothesis test for pixel k is defined as

Ho : zpm (k) = cnm (k) + enm(k)
Hi @ znm (k) = snom(k) + cnm (k) + enm (k)

where Hp and H; represent the target-absent and target-present
cases, respectively; ¢, m (k) and s,, m, (k) denote the clutter and
target signals, respectively; e, (k) ~ N€(0,02) denotes the
Gaussian noise signal with zero mean and variance o?2.

As the SARs are distributed far apart and observe the same
target from different angles, the echoes show a low degree of
correlation between SARs. However, within a single SAR, the
echoes from M channels maintain strong coherence, enabling
coherent signal processing. In this context, the random vector
z,, (k) for the n-th SAR is expressed as

Zn(k) = [Zn,l(k)’ Zm?(k)’ T 7Zn,M(k)}T ’ 2

where z, (k) represents the signal vector for M channels in
the n-th SAR. Under the null hypothesis (Hg), the signal
consists of clutter and noise: z, (k) = ¢, (k) + e, (k). Under
the alternative hypothesis (H;), the signal also includes the
target: z, (k) = s, (k) + c(k) + e, (k). In the above, s, (k),
¢, (k), and e, (k) denote the target signal vector, clutter signal
vector and noise signal vector, respectively.

For a moving target with a radial velocity v, in the n-
th SAR, its Doppler shift f,, = 2v,/A induces a phase
shift of 27 fmv— during the array’s traversal of the effective
baseline d/2 [20], where A is the radar wavelength. The target
amplitudes from the M channels are assumed to be identical
for focused target pixels. Therefore, s, (k) is expressed as
sn(k) = &n(k)a,(k), where &, (k) denotes the complex
target amplitude for a single channel in the n-th SAR, and
a, (k) is the target spatial steering vector defined as

(M—1)d

2vpp

D

a, (k)=[1,exp(i27 fi, —2%”

)" : "exp(iQﬂ-ftn )]T (3

¢, (k) is modeled as the product of the complex amplitude
&en (k) and the clutter spatial steering vector by, (k): ¢, (k) =
€en (k)b (K), where b, (k) ~ [1,---,1]T since the internal
motion of the ground clutter is typically small. As ground
clutter is usually heterogeneous with varied amplitudes due to

changes in backscatter, a product model is used to model the
amplitude variations in the n-th SAR [12], [21]:

§cn(k) = An(k)§07L(k) “4)

where A, (k) € [0,00) is a texture variable representing the
clutter amplitude changes, and &, (k) ~ N€(0,02) denotes
the homogeneous clutter amplitude following a complex Gaus-
sian distribution with variance o2. For most heterogeneous
backgrounds, the texture variable follows an inverse chi-square
distribution [12], [21]
n—1
_X = ) (5)

2(0xn — )™ ¢ oy, 41
fa,(8) = 57X exp
I'(xn)
where X, denotes the degree of heterogeneity, and a smaller
Xr indicates greater heterogeneity; I'(-) is the gamma function.
Note that the clutter parameters Y, and Jn, and the target
parameters &, and a,, vary withn=1,2,--- ' N.

III. PROPOSED DETECTION METHOD

The functional block diagram of the proposed method is
illustrated in Fig. 2. In brief, multi-scale tests, including
the magnitude tests (71,75,---,Tn) and the phase tests
(v1,92, -+ ,on), are constructed for each SAR. Then, the
distribution characteristics of these tests under the two hy-
potheses are estimated, allowing the receiver operator charac-
teristic (ROC) of each test to be predicted. For a given local
detection Pfa, a two-step local detection is applied in each
SAR. Finally, a global test (3 is formulated by optimally fusing
these local decisions wuq,--- ,uny with weights a1, --- ,an.
The details are detailed as below.

A. Local Detection in Each SAR

1) Magnitude Detection: Adaptive matched filtering is em-
ployed in the range-Doppler domain for each SAR, where the
optimum weighting vector for the n-th SAR is given by

R, (k)a,(k)

n

all (k)Ra" (k)an (k)

where R, (k) is the clutter-plus-noise covariance matrix, es-
timated using L samples from the vicinity of pixel k as
B L

R(k) = 7 3201, 2a(1)zn" (1) [6), [7].

After clutter suppression, the residual signal in the n-th SAR
is expressed as: yn( ) = [wH(k)z,(k)|?. By normalizing the
residual power by o2, the magmtude test is formulated as [12]
et (k) (R) 2 ) s ()

§ )

On

(6)

w, (k) =

Tn(k) =

which is compared against a threshold 7, ; for detection.
The threshold can be determined under a given Pfa (FPy,1):
an 1 = f+oo fT ( n7XnaHO)dtns where an( naXnyHO) is
the probablhty distribution function (pdf) of the magnitude
test under Hy [12]. For a moving target, assume that its
maximum likelihood estimate of the magnitude test is wy,
and the pdf for Hy can be estimated as fr, (tn, Xn,wn; H1).
Accordingly, the probability of detection (Pd) can be computed
as Pdn,l = fn—:olo an (tnaXnawn;Hl)dtn-
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Fig. 2. Framework of the proposed detector.

2) Phase Detection: In the n-th SAR, the SAR images from
the first and last M — 1 channels are used to construct two
data vectors for a given pixel k as follows

21 (k) = (201 (k) 2n2(k), - 2o (R)]T,  (8a)
Zno(k) = [zn2(k), 2n3(k), - 2 (K)]T . (8b)

Here, z,,1(k) and z,2(k) differ by a time delay of d/(2vpy,).
However, this time delay does not impact the spatial steering
vector, allowing the same optimal weighting vector w1 (k)
to be applied to both data vectors for clutter rejection. The
residual signals are then given by

Y1 (k) = Wiy (k)21 (), yn2(k) = Wiy (K)2zn2 (k).

Based on the signal model in (1), we have z,;(k)
cn1(k) + eni1(k) and zp2(k) = cpa(k) + ena(k) under Hoy,
while z,1(k) = sp1(k) + cni(k) + en1(k) and zno(k) =
Sn2(k) + cn2(k) + en2(k) under Hy. Here, s,,1, 1, and e,
denote the target, clutter and noise signals in z,,1, respectively,
while s,2, cn2, and e,y correspond to the target, clutter
and noise signals in z,2, respectively. The time delay - /2

(9a)

introduces a phase difference between z,(k) and an(kp)’,
which propagates to the residual signals y,1 (k) and yn2(k)

Ho : yn1(k) = ye1,n (k) + Yer,n(K), (10a)

) = s ) exp (205250 g 1), 100

Hi : yn1(k) = ysi,n(k) + yer,n(k )+Ze1,n(k), (10c)
a0 = o ) x (12 )5

d

+ ycl,n(k) exp <127chn( )2
Upn

)+ salh), 00
where yer (k) =wH, (k)c,1(k) and yg (k) =w!, (k)sn1 (k)
denote the residuals associated with the clutter and target sig-
nals, respectively; Yer n(k) = Wil (k)e,1(k) and yer n (k) =
wh (k)en2(k) denote the residuals of noise signals in z,,; (k)
and z,2(k), respectively, and |ye1 (k)| = |Ye2,n (k)|

Next, by applying the complex interferometry over y,1 (k)
and yn2(k), we extract the interferometric phase by

on(k) = arg [yn1 (k)yna (k)] - (11)

Under Hyp, assume that a large stationary clutter residual
signal is present, where |yein| > |Vei,n] = |Ve2,n| in (10a)

and (10b). In this case, the interferometric phase ¢, (k) in
(11) approximates 0. Conversely, when a moving target signal
is present alongside clutter and noise signals in the pixel, the
clutter signal is nearly completely suppressed and the residual
of the moving target signal typically exhibits a relatively large
magnitude: |y n (k)] > [ye1.n (k)] > |Yer,n(k)| as described
in (10c) and (10d). Consequently, @, (k) = QW%}?CI £ 0.
Based on this analysis, the phase detection is dgsigned as

|§0n(k)‘ gl Tn,2 (12)

where 7, o is the detection threshold, and H; is declared
if |@n(k)| > 72, otherwise, Hy is assumed. With the
pdfs of the phase-based test estimated from data sam-
ples [14], fon(¢n;Ho) and fon(¢n;Hi), the threshold 1, o
can be determined for a given Pfa (Pp,2) by P,
fntozo fpn(cpn;Ho)dgon Accordingly, Pd is computed by
Pino = f fpn(@m Hy)dpn.

In each SAR if the cell satisfies both the magnitude and
phase detection thresholds, u; = +1; otherwise, u; = —1,
3 =1,--- N. The values of Pd and Pfa (F%, and Py,) can be
approximated by P, = FPr,.1 X P2, Pan = FPan,1 X Pan 2.

B. Global Detection

Based on the optimal fusion rule by Chair and Varshney
[22], the fusion weights aq,--- ,an are derived as [21]

log =2 | if u; = +1
Py
a; 1= P (13)
loglde;’ ifu; =—1
To proceed, the global detection is formulated as
N H,
B=Yaju; >, (14)
j=1

where 1 = log(P(Hp)/P(Hy)) [21] with P(H;) and P(Hp)
being the prior probabilities for the hypotheses H; and Hy,
respectively.

IV. SIMULATION RESULTS

Simulation data are generated to evaluate target detection
performance with following parameters: N =4, M =8, A =
0.25 m, d = 0.125 m, vp; = 120 m/s, vye = 120 m/s, vpz =
100 m/s, Ups = 100 1’1’]/S, X1 = 3, X2 = 5, X3 = 11, X4 = 13,
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Fig. 4. Distributed SAR-AMTI results: (a) interferometric phase of clutter-suppression residuals across SARs; (b) optimal weights a; versus local detection

Py and Pyj for uj

wp = 30, Wy = 10, w3 = 20, Wy = 15, Ul = 57 m/s, Vg = 57
m/s, v;3 = 16 m/s, and vy = 63.67 m/s. The clutter-to-noise
ratios vary from 15 dB to 60 dB. In the simulation for SAR
1, there are 500 heterogeneous clutter samples with varied
CNRs ranging from 15 dB to 60 dB, randomly distributed in
the clutter background, while other 500 homogeneous clutter
samples have a constant CNR of 15 dB. The texture parameter
is estimated as x; = 3. Additionally, the moving target is
simulated with the parameters: v,1 = 120 m/s, w; = 30, and
vr1 = 57 m/s, and added at the sample position 800. The input
data and the outputs from clutter suppression for SAR 1 are
compared in Figs. 3(a) and 3(b). It can be observed that most
clutter can be effectively suppressed, although some strong
clutter residuals persist due to heterogeneous clutter.

Next, based on the above clutter background of SAR 1, the
mean square errors (MSE) for estimating target interferomet-
ric phases are computed for the dual-channel range-Doppler
signals z11(k) and z;2(k) (the classical ATI) [10], [11],
and the clutter-suppression residuals y11(k) and y12(k)((11))
via Monte Carlo simulation, respectively. The results for
vy = 57 m/s are shown in Fig. 3(c). Compared with the
classical ATI, the proposed interferometric phase demonstrates
significantly improved accuracy for targets with low input
SCNRs. Subsequently, the two-step local detection results
for SAR 1 are shown in Fig. 3(d), with local Pfas set to
as 1073 and 107! for the magnitude and phase detection,
respectively. Two tests for potential targets are displayed on
the left and right vertical axes, respectively. In the results, the
false alarms from the magnitude detection are largely mitigated
by the complementary phase detection, while the true target

= +1 and (c) optimal weights a; versus local detection FPy; and Py for uj; = —1; (d) ROC curves.

is successfully identified with high precision. Based on the
theoretical statistics in [14], the pdfs of the interferometric
phases from the clutter-suppression residuals for different
SARs are illustrated in Fig. 4(a). It highlights the variability
of target signatures across radars and the statistical differences
between the clutter and target residuals in the interferometric
phase. In the optimal fusion process, the schematic diagrams
of the optimal weights a; versus local detection probabilities
Pr; and P; = 1— Py, are shown in Fig. 4(b) and Fig. 4(c). It
is evident that, the optimal fusion weights increase with higher
detection reliability, confirming that the fusion rule adaptively
prioritizes more reliable local decisions. Finally, ROC curves
in Fig. 4(d) indicate that the proposed method achieves a
higher Pd compared with single-radar magnitude detections
under the same Pfa.

V. CONCLUSION

The proposed method utilizes both the magnitude and
interferometric phase of clutter-suppression residuals for aerial
moving target detection in distributed synthetic aperture radar
(SAR) systems. The approach incorporates a local two-step
detection for each SAR, combining the magnitude and phase
tests sequentially. Subsequently, the local decisions from all
SARs are fused using optimally derived weights to formu-
late a global detection. Simulation results demonstrate that
the proposed method can effectively reduce false alarms in
heterogeneous environments by leveraging the interferometric
phase of the residuals. Moreover, by utilizing multi-angle
sensing information inherent in distributed SAR systems, the
proposed technique significantly enhances the target detection
probability.
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