International Journal of Computer Vision
https://doi.org/10.1007/s11263-025-02472-w

®

Check for
updates

A Comprehensive Survey of Data Augmentation in Visual
Reinforcement Learning

Guozheng Ma'(® - Zhen Wang? - Zhecheng Yuan? - Xuegian Wang* - Bo Yuan’ - Dacheng Tao'

Received: 1 December 2022 / Accepted: 3 May 2025
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025

Abstract

Visual reinforcement learning (RL), which makes decisions directly from high-dimensional visual inputs, has demonstrated
significant potential in various domains. However, deploying visual RL techniques in the real world remains challenging due
to their low sample efficiency and large generalization gaps. To tackle these obstacles, data augmentation (DA) has become
a widely used technique in visual RL for acquiring sample-efficient and generalizable policies by diversifying the training
data. This survey aims to provide a timely and essential review of DA techniques in visual RL in recognition of the thriving
development in this field. In particular, we propose a unified framework for analyzing visual RL and understanding the role
of DA in it. We then present a principled taxonomy of the existing augmentation techniques used in visual RL and conduct
an in-depth discussion on how to better leverage augmented data in various scenarios. Moreover, we report the empirical
evaluation of DA-based techniques in visual RL and conclude by highlighting the directions for future research. As the first

comprehensive survey of DA in visual RL, this work is expected to offer valuable guidance to this emerging field.

Keywords Visual Reinforcement Learning - Representation Learning - Data Augmentation - Regularization.

1 Introduction

Reinforcement learning (RL) addresses sequential decision-
making problems in which an agent seeks to discover the
optimal policy via trial-and-error interactions with the envi-
ronment [40, 100, 120, 143]. Visual RL, a variant that
learns directly from visual observations such as images,
has gained widespread application across various domains
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due to its intuitive and cost-effective approach to envi-
ronmental perception [170, 192]. This paradigm has been
successfully employed in video games [151], autonomous
driving [82], robot control [76], and other areas. However,
learning directly from high-dimensional visual observations
remains largely hindered by the challenges of low sample
efficiency and large generalization gaps [55, 88, 189, 190,
192].

To learn sample-efficient and generalizable visual RL
agents, a considerable amount of effort has been devoted
to developing diverse approaches, including (1) applying
explicit regularization techniques such as entropy regu-
larization [48, 206] to constrain the model’s weights [23,
58, 107]; (2) performing joint learning with RL loss and
auxiliary tasks to provide additional representation super-
vision [4, 34, 68, 80, 89, 94, 117, 129, 144, 157, 192-195,
214]; (3) building a world model of the RL environment that
allows learning behaviors from imagined outcomes [49-51,
92, 169]; and (4) pretraining an encoder that can project
high-dimensional observations into compact state represen-
tation [91, 104, 137, 142, 147, 156, 166, 179, 191, 199].

Although these approaches have achieved remarkable suc-
cess, they remain challenged by limited interaction data and
poor sample diversity [88, 189, 190]. To address these lim-
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Fig. 1 Agent-environment interaction loop of visual RL: Direct
decision-making from high-dimensional observations brings both flex-
ibility and challenges.

itations by increasing the quantity and diversity of training
data, data augmentation (DA) has garnered increasing atten-
tion from the visual RL community in recent years [35,
55, 190]. As a data-driven method, DA is orthogonal to the
aforementioned approaches and can be combined with them
to further enhance performance [144, 168]. For instance,
DA plays a crucial role in contrastive-based auxiliary tasks,
injecting prior knowledge of task invariance [69, 89, 156].
In addition, DA is essential for pre-training a cross-task rep-
resentation [156, 191]. Furthermore, various DA techniques,
such as random cropping, have been incorporated into almost
all visual RL algorithms as a form of data preprocessing [51,
129, 170].

In general, DA refers to strategies for generating synthetic
training data from existing data without additional collec-
tion or interaction efforts [38, 150]. Figure 2 illustrates the
generic workflow for leveraging DA in visual RL: diverse
augmented data are generated by manipulating the original
interaction data and then exploited to optimize the RL objec-
tive [88, 189, 190]. Moreover, DA can further enhance the
representation learning in visual RL by incorporating aux-

iliary objectives [54, 89, 141, 144]. Despite the surge of
related studies on leveraging DA in visual RL scenarios, this
fast-evolving and expanding field still lacks clarity and coher-
ence. Therefore, this comprehensive survey aims to provide
a bird’s-eye view of DA-based methods in visual RL with the
following main contributions:

1. Based on previous works [83, 154], we present High-
Dimensional Contextual Markov Decision Process
(HCMDP) as a general framework to formalize visual
RL. This framework provides deep insights into the
challenges of low sample efficiency and large gener-
alization gaps in visual RL, which serve as the primary
motivations for introducing DA.

2. We identify two key assumptions of DA with different
motivations: the optimality invariance assumption for
improving sample efficiency and the prior-based diver-
sity assumption for narrowing the generalization gap.

3. We categorize related studies from two principled per-
spectives: how to augment data and how to leverage
augmented data for improved clarity and coherence.
This classification provides a structured framework for
systematically reviewing existing work, offering a clear
and logical organization of the field’s current state.

4. We conduct a systematic empirical evaluation of exten-
sive DA-based methods on representative benchmarks to
comprehensively assess their performance in terms of
sample efficiency and generalization capabilities.

5. We present a comprehensive analysis of DA in visual
RL as the cornerstone of this survey, systematically
examining its unique mechanisms, significant chal-
lenges, and emerging opportunities in the field. Through
this in-depth analysis, we provide critical insights into
both the current landscape and future prospects of DA in
visual RL, along with detailed discussions on potential
research directions and practical considerations.

The body of this survey is organized as Fig. 3. In Sec-
tion 2, we propose a unified high-dimensional contextual
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Fig.2 The generic workflow diagram for leveraging DA in visual RL.
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Fig.3 The schematic structure of this survey.

Markov decision process (HCMDP) framework (Section 2.1)
to formalize the visual RL scenario and highlight its major
challenges (Section 2.2), as well as present the motivations
and definitions of DA in visual RL (Section 2.3). We then
conduct a systematic review of the previous work from two
perspectives: how to obtain and how to leverage augmented
data in visual RL (Section 3 and Section 4). In Section 3,
we categorize DA approaches in visual RL into observa-
tion augmentation, transition augmentation, and trajectory
augmentation, based on the type of data each technique
aims to modify. Moreover, we introduce three advanced
extensions: automatic augmentation, context-aware aug-
mentation, and generative augmentation. In Section 4, we
present the different mechanisms used to leverage DA in
visual RL, including implicit and explicit regularization,
task-specific representation learning decoupled from pol-
icy optimization, and task-agnostic representation learning
using unsupervised learning. To reveal the practical effect
of DA, we introduce the typical benchmarks and summarize
the empirical performance of recent DA-based methods in
Section 5. In Section 6, we put forward a critical discussion
concerning future research directions, including the oppor-
tunities, challenges, limitations, and underlying mechanisms
of DA. Finally, this survey is concluded in Section 7 with a
list of key insights.

Scope.

Given the multitude of topics and research areas related
to DA and visual RL, we constrain the scope of this survey
in several ways to ensure its feasibility. Firstly, this survey
does not cover the related topic of domain randomization
(DR) [138, 162], which aims to solve the sim-to-real problem
in robot control by tuning the physical simulator’s parameter
distribution to align as closely as possible with reality [66,

71, 125]. In contrast, DA can only manipulate observations
post-rendering, without access to the simulator’s internal
parameters, which affords it greater flexibility [83]. Secondly,
this survey focuses on scenarios that involve learning directly
from visual inputs (visual RL) rather than handcrafted state
inputs (state-based RL). Consequently, several works that
introduce DA in state-based RL, will not be prominently
featured in this survey [102, 108]. Thirdly, while DA is a
powerful tool, it is not the sole approach for improving sam-
ple efficiency and generalization in visual RL. To maintain
coherence and focus, this survey does not provide detailed
coverage of works that use DA as a foundational tech-
nique but whose primary research focus lies elsewhere [146,
181, 200]. We strongly recommend readers interested in
generalization issues in RL to refer to another comprehen-
sive survey [83] that focuses on generalization in deep RL.
Finally, to ensure this survey aligns with the latest devel-
opments in Al field, we provide a detailed introduction to
recent research on DA using advanced generative models in
Section 3.6. Additionally, in Section 6.5, we critically exam-
ine the role and relevance of visual RL and DA in the context
of the rapidly evolving landscape of foundation models.

2 Preliminaries

Visual RL addresses high-dimensional image observations
instead of well-designed states and has encountered a series
of new challenges [189, 192]. This section analyzes visual RL
in depth and introduces the formalism of DA used for visual
RL. In Section 2.1, we present a novel framework, HCMDP,
to formalize the paradigm of visual RL. Based on this frame-
work, we analyze the major challenges faced by visual RL
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in Section 2.2. Finally, Section 2.3 introduces the formalism
of DA in visual RL, including its motivation, definition and
two key assumptions.

2.1 High-Dimensional Contextual MDP (HCMDP)

The standard RL task is often defined as a Markov Decision
Process (MDP) [120], which is specified by a tuple M =
(S, A, r,P, p,y) where S is the state space; A is the action
space; r : S x A x § — R is the scalar reward function;
P(s'|s, a) is the transition function; p(-) is the initial state
distribution; and y € (0, 1] is the discount factor. The goal
of RL is to learn an optimal policy 7 *(a|s) that maximizes
the expected cumulative discounted return R(z, M), which
is defined as:

R, M) =E

oo
so~p(-) |:Z ytr(st,at,st+1):| (1)

ar~7(-|sy) =0
si+1~PClse.ar)

Although the MDP is the standard paradigm of RL, it
ignores a crucial factor of visual RL: agents only have direct
access to high-dimensional observations instead of the actual
state information. To properly formulate the visual RL sce-
narios, as shown in Fig. 1, many variants of MDPs [31, 32,
41, 53] have been introduced by using the high-dimensional
observation space O to represent the image inputs. Depend-
ing on the specific assumptions, an emission function ¢ :
S + O can be designed to simulate the mapping from
the state space S to the observation space O. For exam-
ple, the (f, g)-scheme [154] constructs an emission function
as the combination of generalizable and non-generalizable
features while the contextual MDP (CMDP) [31, 52, 83]
introduces context ¢ to distinguish contextual information
from the underlying state information. However, these MDP
variants mainly focus on how to explain the generalization
effect in visual RL, and ignore the issue of constructing a
compact representation from high-dimensional observations.

To better understand visual RL scenarios and provide a
unified view of its specific challenges, we propose High-
Dimensional Contextual MDP (HCMDP) as a general
modeling framework of visual RL. Following the previous
formalism [83, 154], the HCMDP M |¢ can be defined as a
family of environments:

Mic ={Mle = (M, Oc, ¢c)lc ~ p(c), c € C} @)

where M = (S, A, r, P, p, y) specifies the dynamics of
the underlying system. With the fixed base MDP M, the
observation space O, and emission function ¢, depend on
the context ¢, which refers to the peripheral parameters that
are not essential for agents to make decisions. p(c) is the
context distribution, and C represents the entire context set.

@ Springer

For example, the colors and styles of backgrounds in robot
scenarios are extraneous to control tasks, and are thus being
referred to as task-irrelevant features.

To be more specific, context ¢ can be denoted as a set of
parameters {cy, ¢2, ..., ¢,}, where n is the number of task-
irrelevant properties in this system. Each ¢; corresponds to
a task-irrelevant property, all of which are distributed over
afixedrange: {c; € C1,c2 € Ca, ..., ¢, € Cp}. Consider an
autonomous driving example such as CARLA [215]: an agent
learns to control the car directly from pixels in changing
environments. Therefore, the agent must distinguish between
task-relevant and task-irrelevant components in the image
observations. For instance, we can denote the style of the
background buildings as cy, the color of the driving car as ¢
and the number of people walking on the sides of the road as
c3.

The state s and context ¢ constitute the complete infor-
mation (parameters) used by the system to render the final
observed images [154]. However, they both exist in the
low-dimensional latent space, which cannot be directly
observed. In fact, O is the only observable high-dimensional
space where agents perceive task information. Following
the assumptions [154, 163] that observations are high-
dimensional projections of the state s and task-irrelevant
contexts ¢, the emission function ¢. mapping from state
s € S to observation 0 € O, can be defined as:

0 =¢(s):=h(sT, e, cH, ... ) (3)

where s is the high-dimensional representation mapped
from the underlying state s, and each clH is the representa-
tion uniquely determined by the latent context c;. Similar
to the formalism in [154], h is a “combination" func-
tion that combines the task-relevant state representation s/
and task-irrelevant context representations (cf’ , cf e, c,f’ )
to render the final observation. Based on the HCMDP
framework, Fig. 4 shows an illustration of a robot control
environment from the DeepMind control suite [161]. In this
scenario, contexts ¢1 and ¢, separately denote the floor color
and background style, respectively, which are both irrele-
vant to the control task. Correspondingly, ¢f and ¢4 are the
high-dimensional representations mapped from c; and c;.
The final observation o is the combination of the state repre-
sentation s and the task-irrelevant representations cf{ and
oM

An HCMDP M | ¢ consists of a family of specific environ-
ments, where ¢ follows the context distribution p(c) over the
entire context set C. In a given system, M and the rendering
rules from s and ¢; to the high-dimensional representations
s and ciH are established. Hence, different combinations of
the context distribution p(c) and context set C produce dif-
ferent HCMDPs. For any HCMDP M ¢, the expected return
of a policy is defined as:
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Fig.4 A visualized example of HCMDP.

R(m, M|C)::]Ec~p(c),cec [R (r, M|o)] 4

where R is the expected return of policy 7 in a specific MDP.
In practice, we assume that the context distribution is uniform
over the entire context set [83] so that different HCMDPs
can be specified by their context sets C = (Cy, Ca, ..., Cp).
By choosing a training context set Cir,in and a test context
set Ciegt, We can separately define the training context set
HCMDP M|c,.., and the test context set HCMDP M]c,,.
Agents are only allowed to be trained in M|c,,,, and eval-
uvated in the same HCMDP M|c,... or HCMDP M|c,,
whose context exhibits a distribution shift from the training
context set.

Remarks. The key distinction between HCMDP and other
MDP variants lies in the emission function ¢ : S +— O, as
illustrated in Fig. 5.

First, HCMDP explicitly characterizes the high dimen-
sionality of the observation space O by specifying the
mapping between the latent variables s, ¢ and their high-
dimensional representations sH cH . Second, it provides a
unified perspective for understanding generalization chal-
lenges when deploying learned policies to unseen visual
environments, building upon existing assumptions [154,
204]. Specifically, HCMDP posits that the task-relevant fea-
tures of state s and task-irrelevant features of context c are
combined in the final observation without imposing addi-
tional assumptions about their relationship. During training,
this leads agents to potentially overfit to irrelevant context
features, hindering effective generalization to unseen envi-
ronments.

As a general framework, HCMDP can be specialized
into other MDP variants through additional assumptions.
For instance, the (f, g)-scheme [154] assumes that non-
generalizable features in observations are projected from the
latent state via a function gy (-) parameterized by 6; Block
MDP [204] models the emission function as a concatena-
tion of state variables and spurious noise: s @ f(n); and
BC-MDP [152] restricts the agent’s access to a context-
dependent partial state space S¢. While these variants make
specific assumptions about feature relationships, HCMDP
takes a more general approach by focusing solely on how

sH f(s) @
(a) HCMDP (d) (f, g)-scheme

(c) Block MDP

(d) BC-MDP

Fig. 5 A graphical model of the emission function of HCMDP (a)
compared with three other representative MDP variants: (b) (f, g)-
scheme [154], (¢) Block MDP [32, 204], and (d) BC-MDP [152].

task-relevant and task-irrelevant features compose the final
observation.

Note that the HCMDP framework does not take into
account the partially observable features of the underlying
states in a partially observable MDP (POMDP) [57]. Fol-
lowing [120, 189, 191], we assume that the complete state
information can be reasonably constructed by stacking three
consecutive previous image observations into a trajectory
snippet [190]. In summary, the motivation of HCMDP is to
emphasize the fact that the underlying state s is projected
to the high-dimensional observation space along with the
task-irrelevant information of context c. With this unified
framework, the unique challenges of visual RL scenarios
compared with standard RL can be clearly analyzed.

2.2 Major Challenges in Visual RL

Despite the success of visual RL in complex control tasks
with visual observations, sample efficiency and generaliza-
tion remain two major challenges that may lead to ineffective
agents [35, 55, 136, 144, 183]. In this subsection, we present
the formal definitions of sample efficiency and the general-
ization gap based on the HCMDP framework and discuss
their mechanisms.
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2.2.1 Sample Efficiency

This term measures how well the interaction data are lever-
aged to train a model [197]. In practice, we consider an agent
sample-efficient if it can achieve satisfactory performance
within limited environment interactions [144, 189]. In other
words, the goal of sample-efficient RL is to maximize the pol-
icy’s expected return during the training of HCMDP M|c,....
based on as few interactions as possible. The expected return
of policy m in M|c,,;, can be defined as:

J () =R, Mlcyy,) &)

Instead of making decisions based on predefined features,
the agent in visual RL need to learn an appropriate represen-
tation that maps a high-dimensional observation h(s?, ¢#)
to the latent space h(s, ¢) to obtain decision-critical infor-
mation [88, 144, 154, 189]. Since standard RL algorithms
already require large amounts of interaction data [48], learn-
ing directly from high-dimensional observations suffers from
prohibitive sample complexity [192].

One solution to the sample inefficiency problem in visual
RL is by training with auxiliary losses, such as pixel or latent
reconstruction [192, 195], future prediction [68, 94, 144,
194] and contrastive learning for instance discrimination [34,
80, 89, 157] or temporal discrimination [4, 117, 129, 135,
214]. Meanwhile, several model-based methods explicitly
build a world model of the RL environment in pixel or latent
spaces to conduct planning [49-51, 92]. Recently, pretrained
encoders have demonstrated great potential in downstream
tasks where the visual RL environment is explored in an unsu-
pervised manner to obtain a task-agnostic pretrained encoder
that can quickly adapt to diverse downstream tasks [91, 104,
156, 191]. In addition, applying the pretrained encoders from
other domains such as ImageNet [27] to visual RL also
has shown its efficiency in downstream tasks [137, 147,
166, 179]. The aforementioned methods have significantly
improved the sample efficiency of visual RL, but the lack
of training data remains a fundamental issue, which can be
effectively solved by DA. Moreover, abundant auxiliary tasks
and world models are designed and trained based on the aug-
mented data [89, 92, 144, 194]. Hence, DA plays a vital role
in improving the sample efficiency of visual RL algorithms.

2.2.2 Generalization

An agent’s generalization ability can be measured by the
generalization gap when transferred to unseen environments,
which has been extensively investigated [32, 154, 163] and
reviewed [83]. For an HCMDP with varying context sets
Cirain and Ciegt, the generalization gap of policy 7 can be
defined as:

@ Springer

GenGap(JT):=R(7T, M|C[min) — R(, M|Ctest) (6)

As mentioned in Section 2.1, the task-relevant informa-
tion of state s is often conflated with the task-irrelevant
information of context ¢, which may cause agents to over-
fit the task-irrelevant components [34, 154]. How to train
generalizable agents across different environments remains
challenging in visual RL, and distinguishing between the
task-relevant and task-irrelevant components of the observed
images is essential for narrowing the generalization gap.

A naive approach to enhancing generalization is to apply
regularization techniques originally developed for super-
vised learning [23, 107], including ¢, regularization [36],
entropy regularization [48, 206], dropout [58] and batch
normalization [72]. However, these traditional regulariza-
tion techniques show limited improvement in generalization
and may even negatively impact sample efficiency [23,
72, 189]. As a result, recent studies focus on learning
robust representations to improve the agent’s generaliza-
tion ability by introducing bisimulation metrics [77, 205],
multi-view information bottleneck (MIB) [34], pretrained
image encoder [199] etc. From an orthogonal perspective,
DA has been effective in enhancing generalization by gen-
erating diverse synthetic data [88, 189]. Moreover, DA can
implicitly provide prior knowledge to the agent as a type of
inductive bias or regularization [65, 83]. A detailed elabo-
ration of the generalization issue in RL is provided in [83],
which systematically reviews the related studies.

Remarks The primary purpose of establishing precise math-
ematical definitions within our HCMDP framework is to
help readers formally comprehend the specific challenges in
visual RL. Equation 5 and Equation 6 serve this purpose by
mathematically formalizing sample efficiency and general-
ization challenges respectively. Beyond mere formalization,
these equations serve several essential functions:

1. They precisely capture the fundamental challenge of
visual RL - the entanglement of task-relevant and task-
irrelevant information in high-dimensional observations -
which distinguishes it from traditional state-based RL;

2. They transform intuitive concepts of sample efficiency
and generalization into well-defined, quantifiable metrics,
enabling rigorous analysis of these challenges;

3. They provide a framework for systematically examining
and comparing how different methods, particularly DA,
address these challenges through distinct mechanisms.

Together with the HCMDP modeling framework, these
mathematical definitions form the foundation for understand-
ing the unique challenges of visual RL and analyzing how
different approaches, especially DA, address them.
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2.3 DA in Visual RL

As discussed in Section 2.2, the quantity and diversity of
training data are crucial for achieving sample-efficient and
generalizable visual RL algorithms. DA, as a data-driven
approach, has demonstrated significant potential for visual
RL in terms of both sample efficiency and generalization
ability [35, 55, 88, 141, 156, 189, 190, 198]. The advantages
of DA for visual RL can be viewed from two aspects: (1)
it can significantly expand the volume of the original inter-
action data, thus improving the sample efficiency [88]; (2)
it introduces additional diversity into the original training
data, making agents more robust to variations and enhancing
their generalization capabilities [55, 83]. Recent studies have
also revealed the regulatory effect of DA, which can accel-
erate the training process and prevent overfitting [65, 121].
Furthermore, theoretical foundations have also been devel-
oped for DA, such as invariance learning [ 14, 73] and feature
manipulation [149]. Hence, DA has been well recognized as
a viable solution for the challenges in visual RL [83, 185].
Following the conventions in [55, 190], we define a general
augmentation T : O x V +— O%8 as a mapping from the
original observation space O to the augmented observation
space O%8:

08 & r(o;v) YoeO,veV @)
where v € V is a set of random parameters and 7 (-) is the
transformation function acting on the observation o. To gain
anintuitive understanding of the effect of DA, we identify two
assumptions of 7(-) corresponding to the challenges that DA
seeks to address: the assumption of optimality invariance
for improving the sample efficiency and the assumption of
prior-based diversity for narrowing the generalization gap.

2.3.1 Optimality Invariance

In supervised learning (SL), DA methods usually assume
that the model’s output is invariant after transformations;
therefore, they can be directly applied to labeled samples
to produce supplementary data [29, 150]. Considering the
property of RL, DrQ [189] defines the optimality invariance
assumption as adding a constraint to the transformation t,
which induces an equivalence relation between state s and its
augmented counterpart s*“8 constructed from observations
o and 0“"8 respectively [55]. Hence, an optimality-invariant
state transformation 7 : O x V + O can be defined as a
mapping that preserves the Q-values [55], V-values and pol-
icy w [141]:

0Q(0,a) = Q(t(o; v), a),
V(o) = V(t(o;v)), ()
m(o) =n(t(o;v)), Voe O,ac A,veV

Original Observation Augmented Observations
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Fig. 6 Examples of the optimality-invariant augmentation, where key
control-relevant information is preserved.

where v is the set of parameters of 7(-), drawn from the set
of all possible parameters ). Note that optimality invariance
relies on strict restrictions on 7 (-) and the size of ) to ensure
that the same s can be constructed from the original and
augmented observations. In the HCMDP framework, opti-
mality invariance means that augmentation transformations
only change the selected contexts in the high-dimensional
observation space while preserving the entire (conceptual)
state information in the latent space.

For instance, random cropping [88, 189] satisfies the
optimality invariance assumption in most robot control envi-
ronments such as the DeepMind control suite [161]. In Fig. 6,
cropping generates augmented observations by randomly
extracting central patches from the original image. Since the
robot is centrally placed in the images, cropping only elim-
inates irrelevant information such as the background color
while preserving the task-relevant information such as the
robot’s posture [163].

With the optimality-invariant augmentation of the original
observations, we can obtain sufficient training data based on
limited interactions with the environment so that the sample
efficiency can be significantly improved [141, 189]. How-
ever, due to the constraint of Eq. 8, optimality-invariant
augmentations cannot provide sufficient diversity to enhance
the agent’s generalization ability [55, 189]. Consequently, it
is necessary to break the limitation of optimality invariance
to capture the variation between the training and test envi-
ronments [55].

2.3.2 Prior-Based Diversity

Based on prior knowledge about task-irrelevant contextual
variations between training and test environments, targeted
augmentations can be strategically applied to capture these
variations effectively [83]. This approach introduces prior-
based diversity by modifying corresponding features in the
observed images. It is important to note that while DA can
manipulate observed images, it cannot directly alter the dis-
tribution of the latent context. Figure 7 illustrates this concept
using a representative example from DMControl-GB [54].
Knowing that background color and style vary between
training and test environments, we can deliberately employ

@ Springer
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Fig.7 Examples of applying DA under the assumption of prior-based
diversity, where known task-irrelevant features such as background and
color undergo substantial variations based on prior knowledge.

augmentation techniques such as color jitter to diversify
training observations. Through this approach, agents can
learn to identify task-irrelevant features by developing either
an invariant policy or a robust latent representation from
prior-based strong augmentation [83].

Strong augmentation under the prior-based diversity
assumption breaks the limitation of the optimality invari-
ance assumption and therefore has tremendous potential for
improving the agent’s generalization ability. However, this
approach inevitably increases the estimation variance of the
Q-values and thus may harm the stability of the RL optimiza-
tion process [35, 55].

3 How to Augment Data in Visual RL?

The aim of DA is to increase the amount and diversity
of the original training data so that agents can learn more
efficient and robust policies [55]. Thus, a primary focus
of previous research was to design effective augmentation
approaches [168, 194]. In this section, we introduce the main-
stream augmentation techniques and discuss the pros and
cons of these methods.

Based on the type of data being augmented, we catego-
rize the DA approaches in visual RL into three main types, as
illustrated in Fig. 8. The first category, observation augmen-
tation, involves transforming the given observations while
keeping other transition factors (e.g., actions and rewards)
unchanged, similar to label-preserving perturbations in SL.
In Section 3.1, we detail various methods for employing
DA on observations, which include not only diverse clas-
sical image manipulations directly applied to observation
inputs but also several examples of DA in the feature space.
The other two types, transition augmentation and trajec-
tory augmentation, specifically take into account the unique
properties of RL to broaden the scope of augmentation. In
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Section 3.2, we introduce transition augmentation, which
enhances observations along with supervision signals, such
as rewards. Finally, in Section 3.3, we explore trajectory
augmentation, focusing on generating synthesized sequen-
tial trajectories.

In addition to summarizing techniques for augmenting
different data types, this section will also introduce three
advanced DA techniques that enhance the diversity of DA
and improve its overall effectiveness. Automatic augmen-
tation aims to automatically select the optimal DA type based
on the specific task (Section 3.4), and task-aware augmen-
tation (Section 3.5) focuses on providing data diversity while
preserving critical information within the data. Furthermore,
in light of recent advancements in generative Al, contempo-
rary research has explored the use of technologies such as
GANSs and diffusion models for data generation; we will dis-
cuss this generative augmentation approach in Section 3.6.

3.1 Observation Augmentation

A typical observation augmentation approach is to apply the
classical image manipulations to the observed images; most
such manipulations were originally proposed for computer
vision applications. Following the taxonomy of [150], we
identify five categories of image manipulations: geometric
transformations (Section 3.1.1), photometric transformations
(Section 3.1.2), noise injections (Section 3.1.3), random
erasing (Section 3.1.5) and image mixing (Section 3.1.4).
Figure 9 shows a list of the visualized examples.

3.1.1 Geometric Transformations

Geometric transformations, which maintain optimality
invariance or label-preservation [150], are commonly
employed to address the limited availability of training data.
Random cropping is an effective preprocessing technique
for improving data efficiency; it works on image data with
mixed width and height dimensions by locating a random
central patch in each frame with a specific dimensional-
ity [189, 190]. In many visual RL scenarios, such as robotic
manipulation tasks, the vital regions are often positioned at
the centers of the images, and cropping can remove irrele-
vant edge pixels to simplify the learning process [88]. Similar
to cropping, the window transformation selects a random
region and masks out the cropped part of the image, while
translation renders the image with a larger frame and ran-
domly moves the image within that frame.

Various other geometric transformations have been
explored in visual RL scenarios. For instance, rotation
transforms images by rotating them r degrees clockwise or
counterclockwise, where r is randomly sampled from a pre-
defined range [88]; flipping augments the dataset through
horizontal or vertical reflection of observations. Although
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Fig. 8 The comparison of different DA paradigms depending on
the type of data augmented: observation augmentation only gen-
erates synthetic observations of"®; transition augmentation aug-

proven effective in computer vision tasks, these transforma-
tions require careful consideration in visual RL as they may
result in incorrect behavior without proper action adjustment
to account for orientation changes.

3.1.2 Photometric Transformations

In real-world applications, object and background colors
naturally vary due to environmental conditions such as
lighting and weather [78]. Photometric transformations are
designed to simulate these natural color variations, serv-
ing as a defense against overfitting to specific training data
characteristics [126, 177]. This overfitting problem is partic-
ularly severe in visual RL, where agents may learn spurious
correlations between task-irrelevant features and their poli-
cies, leading to significant performance degradation during
testing [154]. To address this challenge, photometric trans-
formations leverage prior knowledge about the variations
between training and test environments to enhance the gen-
eralization of agent policies to unseen visual scenarios.
Several photometric transformation techniques have been
developed: grayscale performs a straightforward RGB to
grayscale conversion [88]; color jitter manipulates common
image attributes including brightness, contrast, and satu-
ration [25], typically implemented by converting images
to HSV space and introducing controlled noise in the
HSV channels [88]. Additionally, random convolution was
introduced to address visual biases in convolutional neu-
ral networks (CNNs) [93]. This approach processes input
observations through a randomly initialized single-layer con-

. . .. . au. au,
ments observations together with supervision signals (of"¢, a;"®,

au, . . . . .
Ty g); and trajectory augmentation generates virtual trajectories
aug aug aug _aug aug)

L P P T A PR

volutional network while maintaining input dimensions,
effectively augmenting color information.

3.1.3 Noise Injection

Adding noise to images can help CNNs learn robust features
in computer vision tasks [122], and recent studies [35, 55]
also attempted to exploit this mechanism in visual RL to
obtain robust state representations. In practice, distortion can
be introduced by adding Gaussian noise [88] or impulse
(salt-and-pepper) noise [35].

3.1.4 Image Mixing

This type of methods is commonly used in computer vision
tasks to improve a model’s robustness and generalization
ability [209]. Among the different versions of mixing, Over-
lay/Mixup [207] trains a neural network on the convex
combinations of samples and their labels. In visual RL, there
are two ways to leverage the Mixup mechanism. First, we
can combine two observations and their supervision signals,
which will be discussed in Section 3.2. Alternatively, we
can mix RL observations and other images randomly sam-
pled from another dataset while the supervision signals of
the observations remain fixed. For example, SECANT [35]
linearly blends an observation with a distracting image / as
f() = oo+ (1 —a)l, where I is randomly sampled from
the COCO [101] image set.
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Fig.9 Visualized examples of observation augmentation via classical image manipulations.

3.1.5 Random Erasing

Similar to dropout regularization, erasing techniques prevent
overfitting by operating on input data rather than network
architecture [212]. Several variants have been developed:
Cutout[29] introduces random occlusions by masking an
m x n patch of the input image; Cutout-Color extends
this approach by filling the masked region with randomly
sampled colors; CutMix[202], combining the principles of
Cutout and Mixup, replaces the masked region with a patch
from another image while maintaining the original supervi-
sion signals in visual RL settings [35].

3.1.6 Feature Space Augmentation

Beyond input-space transformations, an alternative approach
is to perform augmentations in the feature space [28]. This
feature space, also known as the latent space or embedding
space, represents an abstract domain where meaningful rep-
resentations of high-dimensional data are encoded.

Feature space augmentation primarily operates through
two approaches. The first leverages autoencoders to map
input images into latent features and reconstruct them after
augmentation. Common techniques in this space include
Gaussian noise injection and linear interpolation [21], which
have demonstrated superior diversity compared to tradi-
tional transformations across various supervised learning
tasks [106, 134]. While autoencoders have been employed in
visual RL for reconstruction-based auxiliary tasks to enhance
representation learning [ 127, 192], their potential for generat-
ing high-quality augmented data remains largely unexplored
in this domain.

An alternative approach involves extracting and directly
augmenting representations from the lower layers of CNNs
without the need for high-dimensional image reconstruc-
tion [13, 150]. For example, MixStyle [213] implements
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style mixing at bottom layers to simulate diverse visual
styles [70], achieving robust cross-domain generalization
on benchmarks such as CoinRun [23]. Recently proposed
CLOP [13] introduces a novel augmentation strategy that
permutes pixel positions in feature maps at the deepest con-
volutional layer while preserving channel consistency. This
approach leverages the abstract, high-level features encoded
in deep layers to enhance generalization without requiring
auxiliary representation learning tasks.

3.2 Transition Augmentation

As shown in Fig. 10, augmenting s; with fixed supervision
signals (e.g., the reward r, and action a;) can be regarded as
a form of local perturbation of the corresponding transition,
representing a key example of observation augmentation dis-
cussed in Section 3.1. To ensure the validity of the augmented
transition < sfl 8 yAry Tty Sy +ig >, the augmented observa-
8 must remain within a close range of the original
observation s;. As a result, local perturbation techniques
face inherent limitations in expanding data diversity, a funda-
mental challenge shared across all observation augmentation
approaches.

An intuitive solution is to apply interpolation across dif-
ferent data points instead of performing a local perturbation
on each individual data point. Inspired by Mixup [207] and
CutMix [202], MixReg [168] convexly combines two obser-
vations and their supervision signals to generate augmented
data. For example, let y; and y; denote the signals for states s;
and s, respectively, which can be the reward or state values.
After interpolating the observations by § = As; + (1 — 1)s;,
MixReg introduces mixture regularization in a similar man-
nerviay = Ay; +(1—A)y;, which helps learn more effective
representations and smoother policies.

tion Sy
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Fig. 10 Contrast between augmenting observations via local perturbations (left, Cutout-Color [29]) and augmenting observations with the super-

vision signals through interpolation (right, MixReg [168]).

Original Trajectory

[(z,, Qg Zy11, Qg 1, Ze42) 0 Qe K1) Z:+K)]

Virtual Forward Trajectory

(20, Q1 2441, Qi1 2442, ) Qrik—1) Zerk)
XM

Virtual Backward Trajectory

D _ g
[(Zz' Ay, Zgy1, Ari1, Ze g2, ---’“z+K—1:Z:+K)]XM

Fig. 11 Data flow and architecture of PlayVirtual [194] as an example of trajectory augmentation.

3.3 Trajectory Augmentation

Since observation or transition augmentation cannot directly
enrich the trajectories encountered during training, to further
improve the sample efficiency, PlayVirtual [194] augments
the actions to generate synthesized trajectories under a self-
supervised cycle consistency constraint.

In Fig. 11, PlayVirtual operates entirely in the latent
space after encoding the input observation s, into a low-
dimensional state representation z;. Following the dynamics
model (DM) in SPR [144], PlayVirtual introduces a back-
ward dynamics model (BDM) to predict the backward
transition dynamics (z;4+1,a;) —> z; to build a loop with
the forward trajectory. During the training process, the DM
is supervised by the original trajectory information, whereas
the BDM is constrained by the cycle consistency between
z; and z;. Further discussion on how to train the dynamics
models with the auxiliary loss will be provided in Section 4.2.
After obtaining the effective DM and BDM, PlayVirtual can
generate diverse synthesized trajectories by randomly sam-
pling/augmenting M sets of actions in the action space .4 and
then calculating the state information. Experimental studies

confirmed that regularizing feature representation learning
with cycle-consistent synthesized trajectories is the key to
PlayVirtual’s success.

3.4 Automatic Augmentation

Automatic augmentation is receiving increasing attention
due to the demand for task-specific augmentations [20,
25, 98]. For example, although random cropping is one of
the most effective augmentation techniques for improving
sample efficiency on many benchmarks, such as DMControl-
500k [88, 189] and Procgen [ 141], the induced generalization
ability improvement heavily depends on the specific choice of
augmentation strategy. In general, different tasks benefit from
different augmentations, and selecting the most appropriate
DA method often requires expert knowledge. Consequently,
it is crucial to develop methods that can automatically iden-
tify the most effective augmentation techniques. Research in
visual RL remains in its early stages [141], and we highlight
some promising approaches below.
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Augment

Fig. 12 Examples of context-agnostic augmentation, where augmen-
tation operations inadvertently distort or eliminate critical control
information.

1. Upper Confidence Bound (UCB): The task of select-
ing an appropriate augmentation from a given set can be
formulated as a multi-armed bandit problem where the
action space is the set of available transformations F =
{f1, f2,..., fu}. The UCB [7] is a popular solution for
the multi-armed bandit problem that considers both explo-
ration and exploitation. Recently, UCB-DrAC [141] and
UCB-RAD [42] were proposed to achieve automatic aug-
mentation in visual RL. The experiment results suggest
that UCB-based automatic augmentations can effectively
improve the agent’s generalization capabilities.

2. Meta learning: Meta learning offers an alternative solu-
tion to automatic augmentation and can be implemented
in two ways [141]: (1) training a meta learner, such
as RL?[167], to automatically select an augmentation
type before each update in a DA-based algorithm; (2)
meta-learning the weights of a CNN to perturb observed
images, a technique similar to model-agnostic meta
learning (MAML)[16, 39]. In practice, neither approach
has yielded promising results, and designing expressive
functions for automatic augmentation via meta learning
remains a challenge.

3.5 Context-Aware Augmentation

A notable limitation of existing DA techniques is their
reliance on pixel-level image transformations that pro-
cess each pixel without considering its contextual signifi-
cance [198]. In the context of visual RL, however, pixels
within an observation typically exhibit differential relevance
to the decision-making process [45, 123]. As illustrated
in Fig. 12, context-agnostic augmentation techniques may
inadvertently mask or alter critical regions in the original
observation that are essential for decision making.

This disregard for context elucidates why the straightfor-
ward application of prior-based strong augmentation, despite
its potential to improve generalization, can significantly
impair both sample efficiency and training stability in visual
RL [55, 198]. Consequently, incorporating context aware-
ness into augmentation techniques is essential for enhancing
the effectiveness of DA while minimizing its potential draw-
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backs. Currently, two viable approaches have been proposed
to advance context-aware augmentation:

1. Introducing human guidance. Human-in-the-loop RL
(HIRL) [210] is a general paradigm that leverages human
guidance to assist the RL process. EXPAND [47] intro-
duces a human saliency map to mark the importance levels
of different regions, and it only perturbs the irrelevant
regions. Saliency maps contain human domain knowl-
edge, allowing context information to be embedded into
the augmentation.

2. Excavating task relevance. In visual RL, the contextual
information can be extracted from the task relevance of
each pixel, making it possible to directly determine its
task relevance to achieve context-aware augmentation.
Task-aware Lipschitz DA (TLDA) [198] explicitly defines
the task relevance by computing the Lipschitz constants
produced when perturbing corresponding pixels. Regions
with large Lipschitz constants are crucial for the current
task decision, and these regions will subsequently be pro-
tected from augmentation.

Context-aware augmentation forms the foundation for
semantic-level DA, which aims to apply targeted operations
to different semantic contexts within observations [44, 198].
In Section 6.1, we will further discuss semantic-level DA as
a challenging yet pivotal direction for future research.

3.6 Generative Augmentation

Despite the remarkable success of leveraging generative
models for data augmentation in computer vision tasks [5,
22, 116, 186, 211], the application of VAEs or GANs to
generate synthetic data for reinforcement learning has not
only failed to achieve comparable performance but may even
lead to detrimental effects [74, 216]. This limitation in visual
RL remained unresolved until the recent emergence of dif-
fusion models. Several pioneering works have successfully
demonstrated the potential of diffusion models in generating
high-quality synthetic data for visual RL, marking a signifi-
cant advancement in this domain.

1. Generative Augmentation for Observations. Recently,
ROSIE [196] and GenAug [18] leverage text-guided
diffusion models to augment observations in robotic con-
trol tasks while preserving the corresponding actions,
representing an advanced approach to observation aug-
mentation using generative models. Trained on massive
online datasets, the diffusion models employed for DA
can zero-shot create realistic images of many different
objects and scenes. This approach enables significantly
richer observation diversity compared to traditional DA
techniques.
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2. Generative Augmentation for Transitions. In con-
trast to approaches that solely generate observations,
another line of research focuses on modeling the entire
transition, simultaneously synthesizing novel action and
corresponding reward labels. Within this paradigm, Syn-
thER [109] directly trains diffusion models using either
offline datasets or online replay buffers, subsequently gen-
erating samples for policy improvement. Advancing this
concept further, MTDIFF [59] transcends the limitations
of single-task scenarios by leveraging diffusion models to
consolidate knowledge from multi-task datasets and aug-
ment data for novel tasks. The success of SynthER and
MTDIFF demonstrates the significant potential of lever-
aging synthetic data to enhance visual RL performance.

Overall, recent studies and analyses indicate that data gen-
erated by diffusion models surpasses that of traditional DA
methods in both diversity and accuracy [109]. This clearly
demonstrates the capability of advanced generative models
to produce novel, diverse, and dynamically accurate data.
Such high-quality synthetic data can be effectively utilized
by policies to enhance both the sample efficiency and gen-
eralization ability of visual RL algorithms. Furthermore, the
text-controllable nature of current generative models enables
them to serve as effective tools for semantically meaningful
samples [18]. This capability holds promise for achieving
genuine semantic-level manipulation of training data, pre-
senting a crucial direction for future research.

3.7 Remarks

Data augmentation, as a data-centric approach, has demon-
strated remarkable success in visual RL tasks, significantly
enhancing both sample efficiency and generalization abil-
ity. This section provides a comprehensive review of various
approaches addressing “How to augment data in visual RL".
Different augmentation strategies exhibit varying degrees
of effectiveness across application scenarios. The optimal
choice of augmentation technique often depends on the spe-
cific characteristics of the task at hand. Nevertheless, despite
this task-specific nature, we can distill several fundamental
insights that generalize across different contexts:

1. In contrast to DA in supervised learning scenarios, visual
RL tasks encompass a richer set of data elements, includ-
ing observations, latent states, and actions. Furthermore,
these tasks incorporate temporal information that can be
modeled as sequential transitions or complete trajecto-
ries, thus offering a wider range of manipulable data
types [168, 194]. Among these, observation augmentation
has gained the most widespread application due to its ease
of implementation [190]. However, with the advancement

of generative models, more complex yet diverse transition
and trajectory augmentation techniques show potential for
achieving novel breakthroughs.

2. To date, spatial perturbations and minor scaling of obser-
vations have emerged as the most effective and widely
adopted DA approaches for enhancing sample efficiency
in visual RL [113, 190]. This finding stands in marked
contrast to conclusions from other domains, primar-
ily attributable to the distinct underlying mechanisms
through which DA enhances sample efficiency in visual
RL [112]. We will discuss these mechanisms in depth in
Section 6.3.

3. The robust generalization ability of visual RL agents
during deployment largely depends on the diversity of
training data. Consequently, both traditional strong aug-
mentation techniques such as Color Jitter and advanced
generative augmentation methods need to provide suffi-
cient data richness to narrow the generalization gap [59].
In this context, ensuring training stability and maintain-
ing the consistency of augmented data with environment
dynamics become crucial considerations [55, 198].

4. The advancement of DA in visual RL hinges on devel-
oping methods for the automated generation of optimal,
context-aware augmented data. Recent progress in has
revealed promising avenues for leveraging pre-trained
generative models to synthesize novel data that simul-
taneously exhibits rich diversity and maintains fidelity to
the inherent constraints of RL dynamics.

4 How to Leverage Augmented Data in
Visual RL?

Next, we discuss how to exploit the augmented data in visual
RL. To ease the discussion, we divide the application scenar-
ios where DA plays a vital role into three cases.

Case 1: Sample-efficient RL in the single-environment
setting. Agents are trained and evaluated within a fixed envi-
ronment, commonly referred to as the single-environment
setting [190, 192]. The primary objective is to attain sat-
isfactory performance with minimal interactions within the
environment [113].

Case 2: Generalizable RL in the multi-environment
setting. Agents are tested in unseen environments after inter-
acting with the training environments [35, 96]. Since RL
agents tend to overfit the training environment [206], gener-
alizing the learned policies to unseen environments remains
challenging even when only visual appearances are altered [3,
55].

Case 3: Generalizable RL in the multi-task setting.
Agents in the multi-task setting aim to adapt to different
tasks. Traditional end-to-end RL algorithms heavily rely
on task-specific rewards, making them unsuitable for other
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Fig. 13 Three representative scenarios highlighting the critical role of
DA. In the context of single-task environments, DA enhances sample
efficiency during training and improves generalization ability during

tasks [104, 156]. Recent studies have attempted to address
this limitation by pretraining cross-task representations in
a task-agnostic manner, thereby enabling agents to swiftly
adapt to multiple downstream tasks [90, 200].

InFig. 13, RL agents are trained with task-specific rewards
in Case 1 and Case 2, where DA is implemented as an implicit
regularization penalty when enlarging the training set (Sec-
tion 4.1). However, the effect of implicit regularization is
limited [144], and many studies have attempted to design
auxiliary losses to exploit the potential of DA (Section 4.2).
Some studies have also aimed to decouple representation
learning from policy optimization to attain more general-
izable policies [35] (Section 4.3). Finally, the related works
belonging to Case 3, referred to as task-agnostic representa-
tion approaches using unsupervised learning, are introduced
in Section 4.4.

4.1 Implicit Policy Regularization

DNNs are capable of learning complex representational
spaces, which is essential for tackling intricate learning tasks.
However, the model capacity required to capture such high-
dimensional representations makes these techniques difficult
to optimize and prone to overfitting [121]. Moreover, the
complexity of visual RL is further aggravated by the need
to jointly learn representations and policies directly from
high-dimensional observations based on sparse reward sig-
nals [88, 192]. As a result, it is difficult for agents to
distinguish the task-relevant (reward-relevant) features from
high-dimensional observations, and they may mistakenly
correlate rewards with spurious features [154]. To solve these
issues, researchers have conducted a series of studies to
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deployment. Furthermore, DA contributes to training task-agnostic rep-
resentations, facilitating superior generalization and adaptation across
multiple tasks.

develop effective regularization techniques, which can pre-
vent overfitting and improve generalization by incorporating
the inductive biases of model parameters [121].

In RL, a myriad of techniques have been proposed as
regularizers such as L?-norm regularization [ 100], batch nor-
malization [36], weight decay [23] and dropout [72]. Among
them, L?-norm regularization explicitly includes regulariza-
tion terms as additional constraints, and is referred to as
explicit regularization [154]. Conversely, weight decay and
dropout aim to tune the optimization process without affect-
ing the loss function, making them implicit regularization
strategies [72]. Additionally, DA has been prevalent in the
deep learning community as a data-driven technique [65,
150]. Furthermore, increasing efforts have been devoted to
the theoretical underpinnings behind DA [9, 14, 149, 184,
208] to explain its regularization effects, including the deriva-
tion of an explicit regularizer to simulate the behaviors of
DA [9].

The initial and naive practice of DA is to expand the
training set with synthesized samples [165]. This practice
incorporates prior-based human knowledge into the data
instead of designing explicit penalty terms or modifying the
optimization procedure. Hence, it is often classified as a type
of implicit regularization, formulated as the empirical risk
minimization on augmented data (DA-ERM) [184] in SL
tasks:

N
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where (xi, y;) represents the i™ original training sample

(xi € X denotes the input feature, and y; € ) is its cor-
responding label); xi, j signifies the j™ augmented sample
of xi, which retains the corresponding label y;; « indicates
the number of augmentations; / : J x )V — R is the loss
function, and A (-) is the model to be optimized.

In the visual RL community, RAD [88] and DrQ [189]
first leverage classical image transformation strategies such
as cropping to augment the input observations via the implicit
regularization paradigm. In the original paper, DrQ is pro-
posed with two distinct ways to regularize the Q-function.
On the one hand, it uses K augmented observations from the
original s/ to obtain the target values for each transition tuple
(Sir @i, i, 5)):

K
1
Yi=Titye ]; Qo (f (i vi 1) @i )
al  ~ TG ) (10

where f : S x 7 — § is the augmentation function and v is
the parameter of f(-), which is randomly sampled from the
set of all possible parameters 7 . Alternatively, DrQ generates
M different augmentations of s; to estimate the Q-function:

N.M

> 11Qo(f(sivvim).a) — yill3 (11)

i=1,m=1

DrQ
J 0) = ——
o ©) N

In the above, DrQ leverages DA for improved estimation
without adding any penalty terms, which is a type of data-
driven implicit regularization. Since a sample can be defined
as a tuple (x;, y;) in SL or a transition (s;, a;, 1i, S ) in RL,
the optimization objective of DrQ can be rewritten as:

1
rQ
0
0) =~
N M K
Z DD IS Gsivvim)s @i iy £(s], v p)
i=1 m=1k=1
(12)
where I(s;, ai, ri, s)) = || Qo (si, ai) — (ri +y Qo (s], a3

is the loss function, and a; ~ m(-|s). RAD [88] can be
regarded as a specific form of DrQ with K =1 and M = 1;
itis a plug-and-play module that can be plugged into any RL
method (on-policy methods such as PPO [143] and off-policy
methods such as SAC [48]) without making any changes
to the underlying algorithm. RAD has also highlighted the
generalization benefits of DA [24].

Since RAD and DrQ directly optimize the RL objective
on multiple augmented observation views without any aux-
iliary losses, they can be viewed as implicit approaches for
ensuring consistency and invariance among the augmented

views. Building on DrQ, DrQ-v2 [190] makes several algo-
rithmic adjustments, such as switching the baseline from
SAC to DDPG and employing a larger replay buffer, which
has resulted in significantly improved sample efficiency. The
success of DrQ-v2 demonstrates that when utilizing weak
augmentation to achieve sample-efficient visual RL algo-
rithms, the method of implicit regularization can effectively
harness the benefits of DA.

However, later studies found that implicit regularization
with cropping exhibits poor generalization performance in
unseen environments [55, 141]. As discussed in Section 2.3,
optimality-invariant transformations (represented by crop-
ping) cannot provide sufficient visual diversity for reducing
the generalization gap. Furthermore, although prior-based
strong augmentations such as color jitter have the potential to
improve generalization, they may induce large Q-estimation
errors and action distribution shifts, as shown in Fig. 14.
Hence, implicit regularization approaches with prior-based
strong augmentations (e.g., random convolution and overlay)
may make the RL optimization process fragile and unsta-
ble [55, 198]. This poses a dilemma in visual RL: diverse
augmentation is necessary to improve an agent’s generaliza-
tion ability, but excessive data variations may damage the
stability of RL [35].

SVEA [55] aims to enhance the stability of RL optimiza-
tion with DA [189]. It consists of two main components.
First, SVEA uses only original data copies to estimate Q-
targets to avoid erroneous bootstrapping caused by DA,
where y; = r; +yQq(s],a}), a; ~ m(:|s]). Second, SVEA
formulates a modified Q-objective to estimate the Q-value
over both augmented and original copies of the observations,
which can be expressed in a modified ERM form as follows:

N
JEVEA(Q) _— Z ||Q9(Si, a) — yi||%

i=1

N M
+BY Y Qo (f (sivvium). ai) — yill3

i=1 m=1

N
=a Y (i, ;. 7. 5])

N M
BY D I(f(sivvim). ain i s))
i=1 m=1

(13)

For actor-critic algorithms, SVEA employs strong aug-
mentation exclusively during critic updates, with no aug-
mentation applied during actor updates. SVEA assumes that
the encoder’s output embedding can become fully invari-
ant to input augmentations. Under this assumption, an actor
trained solely on unaugmented observations can indirectly
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Fig.14 (-estimation errors and action distributions for augmented and
original data. (a) Mean absolute Q-estimation errors of the converged
DrQ [189] agents for the same observations before and after augmenta-
tion (copied from [55]). (b) Action distributions between the augmented
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Fig. 15 The workflow of Stabilized Actor-Critic under Data Augmen-
tation (SADA).

achieve robustness to augmented inputs via a shared actor-
critic encoder. While this assumption holds for scenarios
where the differences between test and training environments
are limited to photometric changes, it fails when geometric
augmentations are necessary for more complex generaliza-
tion tasks.

To overcome this limitation, SADA [3] enhances the use
of DA as implicit regularization to accommodate a broader
range of augmentations. Instead of augmenting only the critic
inputs, SADA carefully augments both actor and critic inputs
to prevent training instabilities. As shown in the Fig. 15,
(1) during actor updates, only the policy input is augmented
while the Q-function input remains unchanged; (2) during
critic updates, only the online Q-function input is augmented
while the target Q-function input remains unaugmented; and
(3) components are jointly optimized using both augmented
and unaugmented data.
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(b ) Action Distribution

and original data. We use t-distributed stochastic neighbor embedding
(t-SNE) to show the high-dimensional actions employed by the same
converged DrQ agent.

SVEA [55] and SADA [3] have significantly enhanced the
generalization ability of visual RL algorithms. They achieve
this by carefully designing pipelines that use strong augmen-
tations without adding auxiliary losses or altering RL update
mechanisms. This demonstrates the potential of implicit
regularization to leverage DA for better generalization. How-
ever, it is crucial to meticulously design the use of strong
augmentations to avoid training instabilities. In addition to
carefully designing implicit regularization, other approaches
have been explored to harness DA for improving both sample
efficiency and generalization while avoiding adverse effects
on training stability. These approaches include designing
auxiliary tasks (Section 4.2) and decoupling representation
learning from policy optimization (Section 4.3).

4.2 Explicit Policy Regularization with Auxiliary
Tasks

Visual RL relies on the state representation, but it remains
challenging to directly infer the ideal representation from
high-dimensional observations [62]. A typical workflow
involves designing auxiliary objectives to facilitate the rep-
resentation learning process [11], or improve sample effi-
ciency [89] or prevent observational overfitting [154]. In
general, an auxiliary task can be considered an additional
cost function that the RL agent predicts and observes from the
environment in a self-supervised manner [140]. For example,
the last layer of the network can be divided into multiple parts
(heads), with each head dedicated to a specific task [97, 158,
193]. These multiple heads then propagate errors back to the
shared network layers, thereby forming the comprehensive
representations required by all heads.

With the recent success in unsupervised learning, various
auxiliary tasks have been designed to produce effective rep-
resentations [63, 140]. Thus, it is natural to design additional
losses to explicitly constrain an agent’s policy and value func-
tions, which we will discuss in Section 4.2.1. Moreover, we
introduce contrastive learning as a lower bound of mutual
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information in Section 4.2.2 and future prediction objectives
with a DM in Section 4.2.3.

4.2.1 DA Consistency

In contrast to simply inserting augmented data into the
training dataset, DA consistency (DAC) [184] builds a reg-
ularization term to penalize the representation difference
between the original sample ¢, (x;) and augmented sample
¢n (Xi,j), under the assumption that similar samples should
be close in the representation space:

N N «
arhgr%inZz (h (i), y)+2 )Y 0(dn (%), dn (xi.7))
A |

i=1 j=I

DAC regularization

(14)

where ¢, refers to the features extracted from the high-
dimensional data, which can be viewed as the output of any
layer in the DNN, and o is the metric function defined in
the representation space, which can be the £, norm or KL
divergence. As an unsupervised representation module, DAC
regularization can be employed as an auxiliary task in any
SL or RL algorithms to enforce the model to produce simi-
lar predictions on the original and augmented samples. For
example, SODA [54] calculates the consistency loss by min-
imizing the L? norm between the features of the augmented
and original observations in the latent space; SIM [178] pro-
duces a cross-correlation matrix between two embedding
vector sets of the original and augmented observations, and
designs an invariance loss term to ensure the invariance of
data.

For RL tasks, it is also desirable to train the network to
output the same policies and values for both original and
augmented observations [189]. For example, DrAC [141]
employs two extra loss terms: G for regularizing the policy
by the KL divergence measure and Gy for regularizing the
value function using the mean-squared deviation:

Gr = KL [mg(als)|mg(al f(s,v))],

) (15)
Gy = (Vp(s) = Vp(f (s, )

The complete optimization objective of DrAC based on
PPO is as follows:

Jorac = Jppo — o, (G + Gy) (16)

where «, is the weight of the regularization term, and both
G, and Gy can be added to the objective of any actor-
critic algorithm. By enforcing the DA consistency into the
networks, specific transformations can be used to impose

inductive biases relevant to the given task (e.g., invariance
with respect to colors or translations) [141, 184].

Compared with implicit regularization techniques such as
RAD and DrQ, DrAC employs two auxiliary consistency
loss terms for explicitly regularizing the policy and the value
function to ensure invariance. Instead of directly optimiz-
ing the RL objective on multiple augmented views of the
observations, DAC regularization uses only the transformed
observations f(s,v) to compute the regularization losses
G, and Gy. Hence, DrAC can benefit from the regulariz-
ing effect of DA while mitigating the adverse effect on the
RL objective [141].

4.2.2 Contrastive Learning

Another type of auxiliary task closely related to DA is con-
trastive learning. As mutual information (MI) is often hard
to estimate, it is practical to maximize the lower bound of MI
through approaches using, for example, InfoNCE loss [135])
to train robust feature extractors [164]. Recent studies [89,
156] have shown that contrastive learning can significantly
improve the sample efficiency and generalization perfor-
mance of visual RL [193]. Since contrastive learning only
requires unlabeled data, it can not only be performed as aux-
iliary tasks together with RL objectives but also be leveraged
to learn a task-agnostic representation, which we will discuss
in Section 4.4.

In visual RL, there are two types of contrastive learning for
improving agents’ sample efficiency and generalization abil-
ities [193]. The first class [34, 80, 89] focuses on maximizing
the MI between different augmented versions of the same
observation while minimizing the similarity between differ-
ent observations. It tends to further exploit the regularization
ability of DA at the MI level [193]. However, simply maxi-
mizing the lower bound of MI may retain the task-irrelevant
information [37], which needs to be eliminated based on the
information bottleneck principle. The second class [135, 156]
aims to maximize the predictive MI between consecutive
states by applying contrastive losses between an observation
o; and the near-future observations o, over multiple time
steps. This technique encourages the encoder to extract the
temporal correlations of the latent dynamics from the obser-
vations [156], and DA can be applied as the prior-based data
preprocessing.

Maximizing Multi-view MI: In self-supervised representa-
tion learning, feature extractors can be trained by maximizing
the MI between different augmented views of the original
data [164], and this approach has also been extended to the
domain of visual RL [89, 157].

CURL [89] is the first general framework for combin-
ing multi-view contrastive learning and DA in visual RL.
It builds an auxiliary contrastive task to learn useful state
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representations by maximizing the MI between the differ-
ent augmented views of the same observations to improve
the transformation invariance of the learned embedding. In
Fig. 16, the contrastive representation is jointly trained with
the RL objective, and the latent encoder receives gradients
from both the contrastive learning objective and the RL objec-
tive.

A key component of contrastive learning is the selec-
tion of positive and negative samples relative to an anchor,
and CURL uses instance discrimination rather than patch
discrimination [89]. Specifically, the anchor and positive
observations are two different augmentations of the same
observation, while the negative samples come from other
observations in the minibatch. The contrastive learning task
in CURL aims to maximize the MI between the anchor and
the positives while minimizing the MI between the anchor
and the negatives.

Following the setting of momentum contrast (MoCo) [60],
CURL applies DA twice to generate queries and key observa-
tions, which are then encoded by the query encoder and key
encoder, respectively. The query observations o, are treated
as the anchor, while the key observations oy contain the posi-
tives and negatives. During the gradient update step, only the
query encoder is updated, while the key encoder weights
are set to the exponential moving average (EMA) of the
query weights [60]. CURL employs the bilinear inner prod-
uct sim(g, k) = g7 Wk to measure the agreement between
query-key pairs, where W is a learned parameter matrix.
Then, it uses the InfoNCE loss [135] to build an auxiliary
loss function as follows:

exp(q” Wky)
exp(qT Wky) + 315" exp(q? Wiy)

7)

LinfoNcE = log

where {ko, ko, ..., kx—1} are the keys of the dictionary and
k4 denotes a positive key. The InfoNCE loss can be inter-
preted as the log-loss of a K-way softmax classifier whose
label is k4 [164].

Many subsequently developed contrastive multi-view
coding methods also employ the InfoNCE bound to max-
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(DRIBO).

imize the MI between two embeddings that result from
different augmentations. For example, DRIBO [34] aims to
maximize the InfoNCE loss f,/, (ogl), 052)), where i repre-
sents the learnable parameters. Moreover, ADAT [80] selects
the positive observations with the same action type and the
negatives with other actions so that more positives can be
produced. CCLF [157] introduces a curiosity appraisal mod-
ule to select the most informative augmented observations
for enhancing the effect of multi-view contrastive learning.

Although maximizing similarity between augmented
observations benefits representation learning [89, 193], this
approach of maximizing the mutual information lower-
bound may inadvertently preserve task-irrelevant features,
thereby limiting the agent’s generalization capabilities.

To address this limitation, DRIBO [34] combines con-
trastive learning with a multi-view information bottleneck
(MIB)-based auxiliary objective. The key insight is that
effective RL representations should both facilitate future
state prediction and minimize task-irrelevant information
from visual observations. As illustrated in Fig. 17, DRIBO
assumes that augmented observations share identical task-
relevant information, while any unshared information is
considered task-irrelevant [34].

In implementation, DRIBO maximizes task-relevant MI
using InfoNCE (similar to CURL) while leveraging the infor-
mation bottleneck principle to construct arelaxed Lagrangian
loss. This approach aims to obtain sufficient representations
with minimal task-irrelevant information. Specifically, the
task-irrelevant minimization term is upper-bounded by:

Lskr = DskL(po(stP]orV st — 1D ar — 1)
2 2 2 (18)
11p0(stP)0ot D, st — 1@ ar — 1))

where Dsky denotes the symmetrized KL divergence com-
puted from the encoder-generated probability densities of
st and 51,
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Empirical evaluations demonstrate that DRIBO achieves
substantial improvements in both generalization and robust-
ness on standard benchmarks including the DM control
suite [161] and Procgen [24].

Maximizing Temporal Predictive MI: Predictive repre-
sentation learning presents another powerful paradigm for
learning effective representations that can be seamlessly inte-
grated with DA. The first approach is to directly minimize the
prediction error between the true future states and the pre-
dicted future states via a dynamic transition model, which
will be discussed in Section 4.2.3. Another approach is to
maximize the lower bound of the MI between the embeddings
of consecutive time steps to induce predictive representations
without relying on a generative model.

Early works such as CPC [135] and ST-DIM [4] employed
temporal contrastive losses to maximize mutual informa-
tion between previous and future state embeddings, though
without incorporating DA. Recent approaches including
ATC [156], CCFDM [129], and CoDy [193] advance this
framework by applying DA to pre-encoded observations,
thereby imposing inductive bias against task-irrelevant infor-
mation.

CoDy [193], for instance, introduces LTMI to maxi-
mize the InfoNCE bound on temporal mutual information
between current state-action embeddings and subsequent
state embeddings, aiming to enhance latent dynamics lin-
earity. The implementation first randomly samples transition
batches (st, ar, s;4+1) from the replay buffer. These tran-
sitions are then encoded to obtain positive sample pairs
(z}, ¢1, z14+1). For each positive pair, negative samples are
constructed by replacing z;1 with features z,; from other
pairs (z,1 2 Cir 2, Jrl) within the same minibatch. Additionally,
M-CURL [214] introduces a novel approach using bidi-
rectional transformers to reconstruct masked observation
features from contextual observations, capturing temporal
dependencies through contrastive learning between recon-
structed and original features.

4.2.3 Future Prediction with a DM

The motivation of future prediction tasks is to encourage
state representations to be predictive of future states given
the current state and future action sequence [105, 130, 193].
Instead of maximizing the MI between the current state
and the future state using the InfoNCE loss [4, 135, 156],
SPR [144] produces state representations by minimizing the
prediction error between the true future states and the pre-
dicted future states using an explicit multi-step DM. As
shown in Fig. 18, this approach also incorporates DA into
the future prediction task, which enforces consistency across
different views of each observation.

The DM A(-, -) operates entirely in the latent space to
predict the transition dynamics (z;, a;) — Z:;+1, Where
z; = f (o) is encoded by the feature encoder f(-) of the cur-
rent input observation o;. The prediction loss is computed by
summing up the differences (errors) between the predicted
representations Z,11.,+x and the observed representations

it+l:t+K:

K
Epred = Z d (il-‘rkv it+k)
k=1

K N T/ 4
_ Z < Zi+k > Zitk
= \IZe4xll2 1244,

where the latent representation ;11 g iS computed itera-
tively as Z;4x11 = h (2,+k, at+k), starting from 2, £ z, £
fo (07), and Z, i £ fm (0141) 1s computed by the target
encoder f;,, whose parameters are the EMAs of the param-
eters of the online encoder f,. Combined with DA, SPR
improves the agent’s sample efficiency and results in supe-
rior performance with limited iterations on Atari Games and
the DeepMind control suite [144].

PlayVirtual [194] is an extension of SPR that introduces
cycle consistency to generate augmented virtual trajectories
for achieving enhanced data efficiency. Following the DM in
SPR [144], PlayVirtual [194] proposes a BDM for backward
state prediction to build a cycle/loop with a forward trajec-
tory. Given a DM h(-, -), a BDM b(-, -), the current state
representation z;, and a sequence of actions a;.;yg, a for-
ward trajectory and the corresponding backward trajectory
can be generated to form a synthesized trajectory:

(19)

Forward :il‘ =1, it+k+1 =h (it+k, at+k) ,
fork=0,1,--- ,K — 1
Backward 2, x =24k, 2y, = b (Z 4 p1s Ask) -
fork=K-1,K-2,---,0

(20)

Since cycle consistency can be enforced by constraining
the distance between the starting state z, and the ending state
z; in the loop, appropriate synthesized training trajectories
can be obtained by augmenting actions. In practice, the cycle
consistency loss can be calculated by randomly sampling M
sets of actions from the action space A:

M
1
Loye = Mn;dM (z).2) Q21

where d )4 is the distance metric over the latent space M.
The performance of Play Virtual [194] can be explained from
two aspects. First, the generated trajectories can help the
agent "see" more flexible experiences. Second, enforcing the
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trajectory with the cycle consistency constraint can further
regularize the feature representation learning process.

4.3 Task-Specific Representation Learning
Decoupled from Policy Optimization

Utilizing DA as an implicit [13, 88, 189] or explicit reg-
ularization approach with purposefully designed auxiliary
tasks [89, 144, 193], the sample efficiency of visual RL
has been significantly improved, resulting in performance
comparable to state-based algorithms on several bench-
marks [190]. However, training generalizable RL agents
that are robust against irrelevant environmental variations
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remains a challenging task. Similar challenges in SL tasks,
such as image classification, can be addressed by strong aug-
mentations that heavily distort the input images, such as
Mixup [207] and CutMix [202]. However, since the train-
ing process of RL is vulnerable to excessive data variations,
a naive application of DA may severely damage the training
stability [35, 55].

This poses a dilemma: aggressive augmentations are
necessary for achieving good generalization in the visual
domain [64], but injecting heavy DA into the optimization of
an RL objective may cause deterioration in both the sample
efficiency and the training stability [198]. Recent works [35,
54] argued that this is mainly due to the conflation of two
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objectives: policy optimization and representation learning.
Hence, an intuitive idea is to decouple the training data flow
by using nonaugmented or weakly augmented data for RL
optimization while using strongly augmented data for repre-
sentation learning. As shown in Fig. 19, two strategies are
available for achieving the decoupling goal: (1) dividing the
training data into two streams to separately optimize Lgy,
and Lggsr; and iteratively updating the model parameters
by the two objectives [54]; (2) optimizing the RL objective
Lgy first and then sequentially leveraging DA combined
with SSL objective Lgs; for knowledge distillation [35].

Optimizing Lz; and Lgs; Iteratively: This strategy
aims to divide the training data into two data streams and
only uses the nonaugmented or weakly augmented data
for the RL training process; it leverages strong augmenta-
tions under prior-based diversity assumptions to optimize
the self-supervised representation objective and enhance the
generalization ability of the model. In practice, this technique
can be performed by iteratively optimizing the RL objective
Lrr and the self-supervised representation objective Lgsy,
in combination with DA to update the network parameters.
For example, SODA [54] maximizes the MI between the
latent representations of augmented and nonaugmented data
as the auxiliary objective Lsopa, and continuously alter-
nates between optimizing £ gy, with nonaugmented data and
Lsopa with augmented data. While a policy is learned only
from nonaugmented data, SODA still substantially benefits
from DA through representation learning [54].

Optimizing Lr; and Lgs; Sequentially: This is a two-
stage training strategy, which first trains a sample-efficient
agent using weak augmentations, and then enhances the
state representation by auxiliary self-supervised learning or
imitation learning with strong augmentations. For example,
SECANT [35] first trains a sample-efficient expert with ran-
dom cropping (weak augmentation). In the second stage, a
student network learns a generalizable policy by mimicking
the behavior of the expert at every time step but with a cru-
cial difference: the expert produces the ground-truth actions
from unmodified observations, while the student learns to
predict the same actions from heavily corrupted observations,
as shown in Fig. 20. The student optimizes the imitation
objective by performing gradient descent on a supervised
regression loss: £ (0; 65) = ||7s(f(0)) — 7m.(0)|l p, Which
has better training stability than the RL loss. Furthermore,
conducting policy distillation through strong augmentations
can greatly remedy overfitting so that robust representations
can be acquired without sacrificing policy performance.

4.4 Task-Agnostic Representation Learning Using
Unsupervised Learning

Unsupervised/self-supervised pretraining has demonstrated
remarkable success across various domains by training mod-
els without explicit supervision [15, 61, 174]. This paradigm
enables efficient downstream task adaptation through fine-
tuning. Following this success, researchers have explored
developing unsupervised pretrained RL agents capable of
rapidly adapting to diverse test tasks in zero-shot or few-shot
settings [104, 166].

Recent studies [156] have identified a critical limitation
in standard end-to-end RL: visual representations learned
through task-specific rewards often generalize poorly to other
tasks. To address this, an alternative approach proposes task-
agnostic exploration for learning visual representations
without relying on task-specific rewards [156, 191]. This
framework is particularly valuable in multi-task settings
where different tasks, defined by distinct reward functions,
share similar visual environments. For example, the Walker
domain in the DeepMind control suite [161] encompasses
various tasks including standing, walking forward, and flip-
ping backward.

Two principal strategies have emerged for learning task-
agnostic encoders that map high-dimensional inputs to
compact representations. The first involves designing unsu-
pervised representation tasks, as detailed in Section 4.2.
The second approach focuses on maximizing intrinsic
rewards derived from self-supervised objectives such as
particle-based entropy and curiosity [56, 103, 104, 145, 191],
encouraging meaningful behavioral patterns without exter-
nal rewards. Leveraging DA’s capacity for enhancing prior
discrimination, many unsupervised pretraining approaches
combine DA with auxiliary tasks to learn more effective
representations. For instance, ATC [156] integrates random
cropping with contrastive learning for task-agnostic repre-
sentation learning, while APT [104] and SGI [145] employ
DA in designing self-predictive tasks [115].

4.5 Remarks

As a data-centric method, DA is independent of specific RL
baseline algorithms and can smoothly integrate with various
techniques and training paradigms. When applied selectively
to observations without altering other aspects of the algo-
rithm, such as loss functions and training methodologies, DA
acts as a form of implicit regularization. Conversely, incor-
porating auxiliary tasks to create a joint loss function while
performing DA represents explicit regularization. In some
auxiliary tasks, such as DA consistency regularization and
multi-view contrastive learning, DA is an indispensable com-
ponent. In other tasks, such as future prediction, DA serves as
an enhancement. Furthermore, to mitigate training instabil-
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ity induced by strong augmentation, the decoupling of visual
representation learning from policy optimization is receiv-
ing growing attention. This approach proves advantageous
for both task-specific representations and general represen-
tations that are not tied to specific tasks.

5 Experimental Evaluation

This section provides a systematic empirical evaluation of the
methods in visual RL that leverage DA. First in Section 5.1,
we introduce the commonly used benchmarks for evaluating
the sample efficiency and generalization ability of agents.
Then in Section 5.2 and Section 5.3, we present the experi-
mental results of representative RL techniques using DA in
comparison with those of other baselines to demonstrate the
effectiveness of DA and identify the pros and cons of these
methods.

5.1 Representative Benchmarks
5.1.1 Benchmarks for Sample Efficiency Test in Visual RL

Atari Games [75] This suite of games is widely used by both
state-based and image-based discrete control algorithms for
sample-constrained evaluations [120]. While RL algorithms
can achieve superhuman performance on Atari games, they
are still far less efficient than human learners, especially in
image-based cases [89]. In the sample-efficient Atari-100k
setting, only 100k interactions (400k frames with frame-
skip=4) are available. The performance of an agent on a game
is measured by its human-normalized score (HNS), defined
as ;’; :Sé’; , where S4 is the agent’s score; Sg is the score of a
random play; Sy is the expert human score.
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DeepMind Control Suite [161] This is a continuous con-
trol benchmark suite for evaluating visual RL algorithms. It
presents a variety of challenging tasks, including bipedal bal-
ancing, locomotion, contact forces, and goal reaching, with
both sparse and dense reward signals. Previous studies usu-
ally measured the data efficiency and performance of their
algorithms on the DeepMind control suites with 100k (for
measuring learning speed) and 500k (for measuring over-
all performance) environment steps, which are referred to as
DMControl-100k and DM Control-500k, respectively [144].
DeepMind control suite is also a proper testbed for multi-task
settings, as different tasks often involve the same domain.
For example, the walker domain contains running, walking,
standing and many other tasks, allowing agents to transfer
learned policies to other tasks with similar visual observa-
tions.

5.1.2 Benchmarks for Generalization Test in Visual RL

Although Atari Games and the DeepMind control suite are
suitable for benchmarking the sample efficiency of visual RL
agents, they are not applicable for investigating the general-
ization abilities of these agents [88]. Generally, measuring the
generalization ability of an agent requires variations between
the training environment and the test environment, including
state-space variations (the initial state distribution), dynam-
ics variations (the transition function), visual variations (the
observation function), and reward function variations [83].
In particular, DA-based techniques focus on zero-shot gen-
eralization to unseen environments with similar high-level
goals and dynamics but different layouts and visual proper-
ties [13, 148]. Figure 21 shows the representative benchmarks
for evaluating the agent’s generalization ability in visual RL.
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OpenAl Procgen [24] This is a suite of game-like environ-
ments where different levels feature varying visual attributes.
Different combinations of the game levels can be used to sep-
arately construct training and test environments. Agents are
only allowed to be trained on limited levels and are evaluated
on unseen levels with different backgrounds or layouts [168].

DeepMind Lab [10] This is a first-person 3D maze environ-
ment in which various objects are placed in the rooms. As
a measure of their generalization ability, agents are trained
to collect objects in a fixed-map layout and tested in unseen
environments that differ only in terms of their walls and floors
(i.e., the variational contexts).

DeepMind Control Suite Variants [54, 83, 155] Since
the original DeepMind control suite is not applicable for
studying generalization, a number of variants have been
proposed in recent years. Most of them, such as DMControl-
GB [54], DMControl-Remastered [46] and Natural Environ-
ments [203], focus on visual generalization by changing the
colors or styles of the background and floors. Furthermore,
the Distracting Control Suite (DCS) [155] features a broader
set of variations, including background style and camera pose
variations. These variants provide meritorious benchmarks
for evaluating the generalization abilities of continuous con-
trol algorithms using images as inputs.

CARLA [215] This is a realistic driving simulator where
the agent’s goal is to drive as far as possible in 1000 time
steps without colliding into 20 other moving vehicles or bar-
riers [35]. Learning directly from the rich observations in
this scenario is challenging since diverse task-irrelevant dis-
tractors (e.g., lighting conditions, shadows, clouds, etc.) are
available around the agent, which increases the difficulty of
extracting control-related features.

5.2 Sample Efficiency Evaluation

To measure the sample efficiency of algorithms, we report
the results on three common benchmarks: Atari-100Kk,
DMControl-100k and DMControl-500k.

5.2.1 Atari-100k

In Table 1, the results of a random player (Random) and
an expert human player (Human) are copied from [171]
as baselines. Other scores are copied from their original
papers [80, 144, 157, 189, 194, 214]. The results show that
augmenting the observations as implicit regularization is
effective, boosting the performance in terms of the median
HNS from 5.8% (Efficient DQN) to 26.8% (DrQ). Moreover,
appropriate auxiliary tasks such as contrastive learning [89,
214] and future prediction representation [144, 173, 194]
can further yield improved sample efficiency. Among them,

SPR [144] achieves the highest mean HNS value (70.4%)
with its future prediction module, while PlayVirtual [194]
achieves the highest median HNS value (47.2%) with the
trajectory augmentation.

5.2.2 DMControl-100k and DMControl-500k

Compared with Atari games, the tasks in the DeepMind con-
trol suite are more complex and challenging. We first report
the performance of the underlying SAC algorithm [48] based
on state and image inputs, referred to as Pixel SAC and
State SAC in Table 2 (copied from [89]), respectively, fol-
lowed by the results of SAC-AE [192]. Since State SAC
operates on low-dimensional state-based features instead of
pixels, it approximates the upper bounds of sample effi-
ciency in these environments for image-based agents. Similar
to the case of Atari-100k, DrQ [189] achieves significant
improvements over the underlying SAC algorithm [48],
which is unable to complete these tasks. Combining auxiliary
tasks with DA provides improved performance and poten-
tial for training sample-efficient agents. For example, based
on SPR [144], recent studies have achieved superior perfor-
mance by introducing cycle consistency constraints for more
diverse trajectories (PlayVirtual [194]) or curiosity modules
for better exploration (CCFDM [129]).

5.3 Zero-Shot Generalization Evaluation

In this subsection, we report the studies conducted on two
benchmarks representing two different types of generaliza-
tion: Procgen [24] for level generalization in arcade games,
and DMControl-GB [54] for vision generalization in robot
control tasks.

5.3.1 Level Generalization on Procgen

In Table 3, the results of RAD [88] and DrAC [141] are
based on their most suitable augmentation types for differ-
ent environments, and UCB-DrAC selects the most suitable
type of DA as a multi-armed bandit problem. Based on
the comparison of RAD [88] and its underlying PPO algo-
rithm [143], it is evident that appropriate augmentations
are beneficial in almost every environment. Additionally,
explicitly regularizing the policy and value functions after
performing augmentations (as in DrAC [141]) leads to fur-
ther improvements. The outstanding results of CLOP [13]
and DRIBO [34] highlight the remarkable potential of sub-
tly designed representation learning methods to distinguish
task-relevant information from task-irrelevant information.
Table 4 shows the best augmentation type for each game
(copied from the original paper of DrAC [141]). Random
cropping achieves the best performance on 9 out of 16
instances, while 5 out of 16 game environments benefit sig-
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Table 1 Evaluation of Sample Efficiency on Atari-100k. We report the scores and the mean and median HNSs achieved by different methods on
Atari-100k. The results are copied from the original works [80, 144, 157, 189, 194, 214].

Game Human Random DQN CURL CCLF ADAT DrQ M-CURL  SPR PlayVirtual
Alien 7127.7 227.8 558.1 558.2 920.0 1029.7  771.2 1151.6 801.5 947.8
Amidar 1719.5 5.8 63.7 142.1 154.7 147.3 102.8 182.2 176.3 165.3
Assault 742.0 222.4 589.5 600.6 612.4 749.4 452.4 613.5 571.0 702.3
Asterix 8503.3 210.0 341.9 734.5 708.8 864 603.5 738.1 977.8 933.3
Bank Heist 753.1 14.2 74.0 131.6 36.0 164 168.9 220 380.9 245.9
Battle Zone 37187.5  2360.0 4760.8 14870.0 5775.0 21240 12954.0 21600 16651.0  13260.0
Boxing 12.1 0.1 —1.8 1.2 7.4 0.4 6.0 5.9 35.8 38.3
Breakout 30.5 1.7 7.3 4.9 2.7 4.5 16.1 5.7 17.1 20.6
Chopper Command ~ 7387.8 811.0 624.4 1058.5 765.0 1106 780.3 1138.9 974.8 922.4
Crazy Climber 35829.4 10780.5 5430.6 12146.5 7845.0 21240 20516.5 20781.2 42923.6  23176.7
Demon Attack 1971.0 152.1 403.5 817.6 1360.9 851.9 1113.4 864.4 545.2 1131.7
Freeway 29.6 0.0 3.7 26.7 22.6 29.7 9.8 28.9 24.4 16.1
Frostbite 43347 65.2 202.9 1181.3 1401.0 1943.2  331.1 2342.2 1821.5 1984.7
Gopher 2412.5 257.6 320.8 669.3 814.7 601.2 636.3 453.8 715.2 684.3
Hero 30826.4 1027.0 2200.1  6279.3 6944.5 7259.2  3736.3 7360.6 7019.2 8597.5
Jamesbond 302.8 29.0 133.2 471.0 308.8 635.7 236.0 436.2 365.4 394.7
Kangaroo 3035.0 52.0 448.6 872.5 650.0 956.9 940.6 1691.4 3276.4 2384.7
Krull 2665.5 1598.0 2999.0  4229.6 3975.0 3502.9  4018.1 3240.9 3688.9 3880.7
Kung Fu Master 22736.3  258.5 2020.9  14307.8  12605.0 19146 9111.0 17645.6 13192.7  14259.0
Ms Pacman 6951.6 307.3 872.0 1465.5 1397.5 1075 960.5 1758.9 1313.2 1335.4
Pong 14.6 —20.7 —19.4 —16.5 —17.3 —15.1 —8.5 —8.9 -59 -3.0
Private Eye 69571.3 249 351.3 218.4 100.0 388 —13.6 321.6 124.0 93.9
Qbert 13455.0 163.9 627.5 1042.4 953.8 1578 854.4 1785 669.1 3620.1
Road Runner 7845.0 11.5 14919  5661.0 11730.0 12508 8895.1 12320 14220.5 13534.0
Seaquest 42054.7 68.4 240.1 384.5 550.5 251.6 301.2 481.1 583.1 527.7
Up N Down 11693.2 5334 2901.7  2955.2 3376.3 3597.8  3180.8 4399.5 28138.5 10225.2
Mean HNS (%) 100 0 13.7 38.1 38.2 47.2 35.7 46.6 70.4 63.7
Median HNS (%) 100 0 5.8 17.5 18.1 20.6 26.8 34.0 41.5 47.2

# Superhuman N/A 0 1 2 3 6 2 3 7 4

# SOTA N/A 0 0 1 2 5 0 6 7 5

nificantly from photometric transformations, including color
jitter and random convolution. For a detailed understanding
of the connection between the properties of environments
and augmentation types, Fig. 22 suggests that the visual
differences between the training environment and the test
environment act as a major factor when determining the best
augmentation type. For example, the background styles of
Climber vary significantly across different levels, and manip-
ulating the color and other photometric factors is intuitively
beneficial to generalization. By contrast, the different levels
of the maze game Chaser share similar visual information but
exhibit increasing difficulty. Consequently, applying photo-
metric augmentations is likely to fail in this setting, which
is consistent with the experimental results. In such cases,
the appropriate augmentation type is usually random crop-
ping, which is beneficial to sample efficiency and contributes
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to improving the generalization performance. In addition,
CaveFlyer is uniquely friendly with the rotation augmen-
tation, which is often destructive in other games. A closer
check of the game shows that the major regions of the obser-
vations (except the gray areas) feature different positions and
angles, and rotation can effectively narrow down the differ-
ences among them.

5.3.2 Vision Generalization on DMControl-GB

As a variant of the DeepMind control suite [161],
DMControl-GB [54] aims to evaluate the generalization abil-
ity of an agent by changing the image color or replacing the
background with another image set (Fig. 21). A compari-
son of the performance levels achieved in seen environments
(Table 2) and unseen environments (Table 5) shows that
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Table 2 Evaluation of Sample Efficiency on the DeepMind Control
Suite. The reported scores (means and standard deviations) are achieved
by different methods on DMControl-100k and DMControl-500k. The

results are copied from their original works with 10 random seeds [89,
129, 144, 157, 189, 192-194].

DMControl Pixel SAC-AE CURL DrQ SPR CCLF CoDy MLR CCFDM Play State
100k SAC Virtual SAC
Finger, 179 747 767 901 868 944 887 907 880 915 811
Spin +166 +130 +56 +104 +143 +42 +39 +58 +142 +49 +46
Cartpole, 419 276 582 759 799 799 784 806 785 816 835
Swingup +40 +38 +146 +92 +42 +61 +18 +48 +87 +36 +22
Reacher, 145 225 538 601 638 738 624 866 811 785 746
Easy +30 +164 +233 +213 +269 +99 +42 +103 +220 +142 +25
Cheetah, 197 252 299 344 467 317 323 482 274 474 616
Run +15 +173 +48 +67 +36 +38 +29 +38 +98 +50 +18
Walker, 42 395 403 612 398 648 673 643 634 460 891
Walk +12 +58 +24 +164 +165 +110 +94 +114 +132 +173 +82
Ball in cup, 312 338 769 913 861 914 948 933 962 926 746
Catch +63 +196 +43 +53 4233 +20 +6 +16 +28 +31 491
500k

Finger, 179 914 926 938 924 974 937 973 906 963 811
Spin +166 +107 +45 +103 +132 +6 +41 +31 +152 +40 +46
Cartpole, 419 730 841 868 870 869 869 872 975 865 835
Swingup +40 +152 +45 +10 +12 +9 +4 +5 +38 +11 +22
Reacher, 145 601 929 942 925 941 957 957 973 942 746
Easy +30 +135 +44 +71 +79 +48 +16 +41 +36 +66 +25
Cheetah, 197 544 518 660 716 588 656 674 552 719 616
Run +15 +50 +28 +96 +47 +22 +43 +37 +130 +51 +18
Walker, 42 858 902 921 916 936 943 939 929 928 891
Walk +12 +82 +43 +45 +75 +23 +17 +10 +68 +30 +82
Ball in cup, 312 810 959 863 963 961 970 964 979 967 746
Catch +63 +121 +27 +9 +8 +9 +4 +14 +17 +5 491

although DrQ [189] is prominent in terms of sample effi-
ciency, the diversity derived from the naive application of
cropping is limited, and a significant generalization gap
is induced when this approach is transferred to unseen
environments. To provide sufficient visual diversity for gen-
eralization, it is necessary to use strong augmentations such
asrandom convolution and overlay, as indicated by the results
of follow-up studies [55].

SVEA [55] and TLDA [198] both significantly outperform
DrQ [189] by focusing on stabilizing the training process
when leveraging strong augmentation to optimize the rep-
resentation and policy together. Another way to improve
generalization is to decouple the unsupervised representa-
tion learning and the RL optimization process, either in an
iterative manner (e.g., SODA [54] and SIM [178]) or in
a sequential manner (e.g., SECANT [35]). Moreover, pre-
trained encoders from off-the-shelf image datasets such as
PIE-G [199] from ImageNet [27] also show attractive poten-

tial to provide generalizable representations in downstream
tasks.

6 Discussion and Future Works

DA techniques have substantially improved the sample effi-
ciency and generalization abilities of visual RL methods;
however, many challenges remain to be addressed. In this sec-
tion, we elaborate on these points and highlight key directions
for future research, encompassing the opportunities, limita-
tions, and underlying mechanisms of leveraging DA in visual
RL.

6.1 Towards Semantic-Level DA
It can be considered as a kind of feature manipulation tech-

nique that alters the relative contributions of task-relevant
and task-irrelevant features in the gradient update steps of
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Table 3 Evaluation of Generalization Ability on Procgen. Agents are
trained on the first 200 levels of each game and evaluated on unseen lev-

els. The scores are copied from the original papers on UCB-DrAC [141]

and DRIBO [34]. The mean and standard deviation values are calculated
with 10 random seeds.

Game PPO RandFM MixReg RAD DrAC UCB-DrAC CLOP DRIBO
BigFish 4.0+1.2 0.6+0.8 7.1+£1.6 9.9+1.7 8.7+1.4 9.7£1.0 19.2+4.6 10.9+1.6
StarPilot 247434 8.8+0.7 32.4+1.5 33.445.1 29.5+54 30.2+2.8 40.9+1.7 36.5+£3.0
FruitBot 26.7+0.8 24.5+0.7 27.3+0.8 27.3+1.8 28.2+0.8 28.3+0.9 29.84+0.3 30.8+0.8
BossFight 7.7£1.0 1.7+£0.9 8.2+0.7 7.940.6 7.54+0.8 8.3+0.8 9.7+0.1 12.0+0.5
Ninja 5.9+0.7 6.1+0.8 6.8+0.5 6.9+0.8 7.0+0.4 6.9+0.6 5.8+£0.4 9.7+0.7
Plunder 5.0+0.5 3.0+0.6 5.9+0.5 8.5+1.2 9.5+1.0 8.9+£1.0 5.4+0.7 5.8£1.0
CaveFlyer 5.1+£0.9 5.44+0.8 6.1+£0.6 5.1+£0.6 6.340.8 5.3+0.9 5.0+0.3 7.5£1.0
CoinRun 8.5+0.5 9.3+1.4 8.640.3 9.0+0.8 8.8+0.2 8.540.6 9.6+0.1 9.2+0.7
Jumper 5.8+0.5 5.3+£0.6 6.0+0.3 6.5+0.6 6.6+0.4 6.4+0.6 5.6+0.2 8.4+1.6
Chaser 5.0+0.8 1.4+0.7 5.8+1.1 5.9+1.0 5.7+£0.6 6.7+0.6 8.7+0.2 4.84+0.8
Climber 5.7+£0.8 5.3+£0.7 6.940.7 6.940.8 7.1£0.7 6.5+0.8 7.4+0.3 8.1+1.6
DodgeBall 11.7+0.3 0.5+04 1.7+0.4 2.8+0.7 4.34+0.8 4.74+0.7 7.2+1.2 3.8+£0.9
Heist 2.4+0.5 2.440.6 2.6+04 4.1£1.0 4.0+0.8 4.0+0.7 4.5+0.2 7.7£1.6
Leaper 4.94+0.7 6.2+0.5 5.3+£1.1 4.3+1.0 5.3+1.1 5.0+£0.3 9.2+0.2 5.3£1.5
Maze 5.7+0.6 8.0+0.7 5.2+0.5 6.1+1.0 6.610.8 6.3+0.6 5.9+0.2 8.5+1.6
Miner 8.54+0.5 7.7£0.6 9.4+04 9.4+1.2 9.8+0.6 9.7+0.7 9.8+0.3 9.8+0.9

Table 4 Best augmentation types for DrAC [141] in different games. The original experiments [141] investigate a set of eight transformations:
cropping, grayscale, Cutout, Cutout-Color, flipping, rotation, random convolution and color jitter (all of them are shown in Fig. 9).

Game BigFish StarPilot FruitBot BossFight Ninja Plunder CaveFlyer CoinRun

Aug Type Crop Crop Crop Flip Color Jitter Crop Rotate Random Conv

Game Jumper Chaser Climber DodgeBall Heist Leaper Maze Miner

Aug Type Random Conv Crop Color Jitter Crop Crop Crop Crop Color Jitter
CaveFlyer Chaser Climber

¥

Fig. 22 Examples of three games with different structures. As shown in Table 4, the most effective augmentations are color jitter, rotation and

cropping for Climber, CaveFlyer and Chaser, respectively.

the utilized network [149]. In this context, an ideal (albeit
theoretical) DA method would operate at the semantic level,
possessing the capability to precisely identify features perti-
nent to the current label or task while effectively perturbing
irrelevant information.

However, this assumption underlying label-preserving
transformations in SL and optimality-invariant transforma-
tions in RL proves challenging to uphold in practice, par-
ticularly when implementing pixel-level augmentations. The
fundamental limitation of pixel-level approaches becomes
evident when considering their mechanism: such augmen-
tations, which aim to transform each pixel in a context-
agnostic manner, inherently struggle to discriminate between
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task-relevant and task-irrelevant information [198]. This
indiscriminate modification of pixels often results in the inad-
vertent alteration of critical task-relevant features, thereby
compromising the efficacy of DA techniques, particularly
in the domain of visual RL. Therefore, a promising avenue
for advancing DA techniques lies in the development of
semantic-level augmentation strategies. These strategies
offer a more sophisticated approach compared to conven-
tional pixel-level manipulations.

Several recent studies have attempted to move towards
semantic-level DA by focusing on preserving task-relevant
information. For example, EXPAND [47] and TLDA [198],
as discussed in Section 3.5, propose methods to prevent
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Table 5 Evaluation of Generalization Ability on DMControl-GB. The
scores (means and standard deviations) are obtained by conducting
training in a fixed environment and performing evaluations in two

unseen test environments with random colors (top) and natural video
backgrounds (bottom).

Random Colors SAC CURL RAD PAD DrQ SVEA SODA SIM TLDA SECANT PIE-G
Walker, 365 662 644 797 770 942 930 940 947 939 941
Stand +79 +54 +88 +46 +71 +26 +12 +2 +26 +7 +35
Walker, 144 445 400 468 520 760 697 803 823 856 884
Walk +19 +99 +61 +47 +91 +145 +66 +33 +58 +31 +20
Cartpole, 248 454 590 837 630 837 831 841 760 866 749
Swingup +24 +110 +53 +63 +52 +23 +21 +13 +60 +15 +46
Ball in cup, 151 231 541 563 365 961 949 953 932 958 964
Catch +36 +92 +29 +50 +210 +7 +19 +7 +32 +7 +7
Finger, 504 691 667 803 776 977 793 960 — 910 —
Spin +114 +12 +154 +72 +134 +5 +128 +6 +115

Cheetah, 133 — — 159 100 273 294 — 371 582 364
Run +26 +28 +27 +23 +34 +51 +64 +40
Natural Videos

Walker, 274 852 745 935 873 961 955 963 973 932 957
Stand +39 +75 +146 +20 +83 +8 +13 +5 +6 +15 +12
Walker, 104 556 606 717 682 819 768 861 873 842 870
Walk +14 +133 +63 +79 +89 +71 +38 +33 +34 +47 +22
Cartpole, 204 404 373 521 485 782 758 770 671 752 597
Swingup +20 +67 +72 +76 +105 +27 +62 +13 +57 +38 +61
Ball in cup, 172 316 481 436 318 871 875 820 887 903 922
Catch +46 +119 +26 +55 +157 +106 +56 +135 +58 449 +20
Finger, 276 502 400 691 533 808 695 81 - 861 837
Spin +81 +19 +64 +80 +119 +33 +94 +38 +102 +107
Cheetah, 80 - — 206 102 292 229 - 356 428 287
Run +19 +34 +30 +32 +29 +52 +70 +20

augmentation of salient or sensitive areas in observed
images, thereby maintaining critical visual information. In
the broader computer vision community, KeepAugment [44]
uses a saliency map to identify the key regions and then
preserves these informative regions during augmentation
to produce reliable training samples. While not directly a
DA technique, VAI [170] employs unsupervised keypoint
detection and visual attention mechanisms, combined with
a reconstruction loss, to compel the encoder to embed
only the foreground information of the input image. This
method effectively introduces an inductive bias based on the
assumption that key information controlling the objective in
observations typically resides in the foreground, thereby pri-
oritizing task-relevant features.

Recent advancements in pre-trained generative models
have opened new avenues for achieving semantic-level aug-
mentation [18]. The robust generative capabilities of large
multi-modal models offer a promising DA approach that
can be controlled through prompts. For instance, these
models can be instructed to "replace the background of

a robotic arm with an outdoor scene while keeping the
arm itself unchanged". Such prompt-driven DA transfor-
mations have the potential to generate diverse augmented
data while retaining semantic invariance. The application of
generative augmentation in visual RL is still in its nascent
stages. This emerging field presents a fertile ground for fur-
ther exploration, particularly in developing methods that can
leverage the semantic understanding of these models to pro-
duce task-relevant augmentations. Future research directions
should focus on three key aspects: developing RL-specific
prompt engineering methodologies, systematically analyz-
ing the impact of generated data on policy learning, and
establishing mechanisms to ensure generated augmentations
remain consistent with the underlying RL dynamics.

6.2 Trade-off between Training Stability and
Generalization

In practice, DrQ [189, 190] and RAD [88] that leverage
weak DA such as random cropping as implicit regularization
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methods can yield significantly improved sample efficiency
during training, while a noticeable generalization gap is
observed when these approaches are transferred to unseen
environments [35, 54, 55]. Furthermore, more diverse aug-
mentations, such as color jitter, have the potential to improve
generalization but tend to result in unstable optimization and
poor sample efficiency [55, 88]. Therefore, a dilemma of
balancing between stability and generalization is persistent
when applying DA in visual RL. This challenge is par-
ticularly acute due to the inherently fragile nature of the
optimization process in RL [35].

This dilemma is frequently attributed to the conflation
of policy optimization and representation learning in cur-
rent end-to-end visual RL algorithms [35, 54]. Consequently,
a logical approach is to decouple these processes, inde-
pendently learning a robust representation and a competent
policy, as elaborated in Section 4.3 and Section 4.4. Such
decoupling facilitates the application of heavy augmentations
to improve generalization while simultaneously employ-
ing weak augmentations to maintain satisfactory sample
efficiency [35, 54]. This strategy effectively addresses the
stability-generalization trade-off. Moreover, the dilemma
is exacerbated by the limitations of pixel-level augmenta-
tion techniques. These methods, when applied intensively,
risk inadvertently destroying critical features, further com-
plicating the balance between effective augmentation and
preservation of essential information.

Further insight into this dilemma can be gained through the
lens of the bias-variance trade-off, a fundamental principle in
machine learning [30]. Contemporary complex models, such
as DNN, typically exhibit low bias but high variance. Con-
sequently, these models are prone to overfitting the training
data, resulting in sub-optimal performance on unseen data.
DA addresses this issue by introducing increased diversity,
thereby reducing variance and enhancing the model’s gen-
eralization capabilities [206]. Although DA may mitigate
the issue of overfitting, certain augmentation combinations
can actually lead to underfitting, making the training process
unstable and challenging [14, 121]. Note that the issue of
underfitting is more detrimental in RL, as its optimization
process is more unstable than those of supervised tasks.

Overall, there are two potential paths to further balance
training stability and generalization. Firstly, designing more
effective augmented data generation methods to avoid cor-
rupting task-relevant information, as discussed in Section 6.1.
Secondly, optimizing existing paradigms for leveraging DA,
such as decoupling policy optimization and representation
learning.
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6.3 Underlying Mechanisms of DA Efficacy in Visual
RL

Given the widespread application and powerful impact of DA
in visual RL, understanding its underlying mechanisms has
become crucial. However, most works have simply employed
DA as a basic component without delving deeper into ‘why
DA works’ [88, 189, 190]. To gain a comprehensive under-
standing of DA’s effectiveness in visual RL, this section
begins by briefly reviewing existing studies on the under-
lying mechanisms of DA within the broader context of deep
learning (Section 6.3.1). Subsequently, we will explore in
depth the unique mechanisms of DA’s efficacy in visual RL
tasks in Section 6.3.2.

6.3.1 Prevailing Perspectives on DA Effectiveness in DL

In recent years, numerous efforts have been made to investi-
gate the theoretical guarantees for DA from various perspec-
tives. These guarantees provide researchers with valuable
insights into the practical effects of such approaches [8, 14,
149]. This section offers a concise overview of previous
works on the theoretical foundations of DA, categorizing
them into three main perspectives: implicit regularization [8,
65, 121], invariance learning [14, 119] and feature manipu-
lation [149, 176].

Implicit Regularization vs. Explicit Regularization. Reg-
ularization is a fundamental technique in deep learning that
aims to prevent overfitting and improve generalization abil-
ities by constraining the complexity of a model [13, 121,
172]. The regularization strategies of DA act on the training
data instead of the model’s parameters and hence can be con-
sidered a type of implicit regularization approach instead of
an explicit regularization technique that imposes constraints
on the parameters, such as minimizing the £, norms of the
parameters [8]. By keeping the parameter space intact, this
data-driven regularization approach can maintain the model’s
representational capacity while increasing its robustness [65,
189]. In fact, DA is more straightforward than explicit regu-
larization that integrates the prior knowledge into objective
functions, and neural networks can implicitly encode the
attributes of DA without explicitly training towards these
objectives [26, 180, 182]. Furthermore, attempts have also
been made to derive explicit regularizers to describe the
implicit regularization effect of DA [9, 67].

Transformation Invariance. Invariance is an essential prop-
erty of all intelligent systems that makes them generalize
effectively [12]. The purpose of DA is to constrain a model’s
output to be invariant when applying task-irrelevant trans-
formations to the input data [141, 207]. It has been widely
accepted that translation invariance is an inherent feature
of CNNs [182], whereas other types of transformation
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invariance, such as rotation invariance, must be induced by
corresponding augmentations [73]. The definition of DA
assumes that semantics are invariant to data transforma-
tion [150, 189], which implies that performing optimization
with augmentation can result in implicit invariances. Fur-
thermore, the specific details of augmentations can be used
to encode prior knowledge about task-specific or dataset-
specific invariances [12].

Feature Manipulation. An alternative explanation of how
DA works is derived from the perspective of feature manip-
ulation [187, 188, 217]. Learning meaningful features from
high-dimensional data is empirically challenging, as critical
features are often highly sparse and associated with spurious
features such as dense noise. In practice, this may result in
the network’s overfitting the noisy features instead of prop-
erly learning the critical features [133]. First, by adjusting
the relative contributions of the original data features, DA
can effectively facilitate the incorporation of informative
but hard-to-learn features into the learning process [149].
Second, the latest research shows that leveraging DA in con-
trastive learning can decouple spurious features from the
representations of positive samples. By ignoring the decou-
pled features, the performance of networks may be boosted
by focusing on the learning of resistant features [176].

6.3.2 Specialized Mechanisms of DA in Visual RL

The underlying mechanisms of DA in visual RL partially
align with those observed in other domains, as discussed in
Section 6.3.1. For instance, applying random shift to input
observations without modifying other algorithmic details
can be viewed as a form of implicit regularization [67,
113]. Additionally, the improvements in visual generaliza-
tion achieved through DA can be attributed to the previously
mentioned concepts of transform invariance and feature
manipulation [83]. However, several remarkable phenomena
unique to applying DA in visual RL cannot be adequately
explained by mechanisms from other domains.

As illustrated by the blue training curve in Fig. 23, visual
RL agents (based on the DDPG algorithm [100] in this exam-
ple) fail to achieve an effective decision policy in the classic
continuous control task Walker Run from the DeepMind Con-
trol suite [ 161]. Remarkably, merely applying simple random
shift transformations to input observations, without any other
modifications to the algorithm, results in superior perfor-
mance [190], as demonstrated by the orange curve in Fig. 23.
This striking improvement in training efficiency for visual
RL stands in stark contrast to the incremental performance
gains typically observed when applying DA in other task
domains [185]. Such a significant disparity suggests that pre-
vious understandings of DA’s mechanisms are insufficient to
fully explain its role in visual RL tasks. Instead, this remark-
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Fig. 23 Unlike in tasks from other domains, DA decisively enhances
the training efficiency of visual RL.

able enhancement implies that DA must effectively overcome
some critical bottleneck unique to visual RL that previously
limited its training efficacy. This phenomenon motivates a
deeper investigation into the underlying mechanisms through
which DA contributes to the effectiveness of visual RL algo-
rithms.

The most recent investigation [112] has unveiled that DA’s
remarkable effectiveness in visual RL stems from its ability
to mitigate the plasticity loss of deep neural networks. Plas-
ticity, referring to the capacity of deep neural networks to
continually learn from new data, gradually diminishes during
training with non-stationary objectives [131, 153]. The inher-
ent nature of DRL necessitates that agents continuously refine
their policies through environmental interactions, resulting
in intrinsically non-stationary data streams and optimiza-
tion objectives [86]. This characteristic of DRL paradigms
renders plasticity loss a critical impediment to achieving
sample-efficient applications, as the networks must maintain
their adaptability throughout the learning process [110, 132].
Compared to traditional state-based RL tasks, visual RL algo-
rithms suffer from more severe plasticity loss due to increased
task complexity and larger network architectures. It has been
demonstrated through ingenious experiments [ 112] that with-
out DA, agents fail to train effectively due to catastrophic
plasticity loss, while applying DA significantly alleviates this
bottleneck. Furthermore, DA’s efficacy in mitigating plastic-
ity loss surpasses that of several interventions specifically
designed for this purpose, such as Layer Normalization [111],
Shrink & Perturb [6], and CReLU [1].

@ Springer



International Journal of Computer Vision

6.4 Unique Characteristics of DA in Visual RL versus
Other Domains

Given the widespread application of DA across various
domains in deep learning [85, 207], a pertinent question nat-
urally arises:

Does the implementation of DA in visual RL exhibit ]
significant distinctions from its utilization in other
domains, particularly in supervised and unsupervised
vision tasks?

Indeed, there are substantial differences, which under-
scores the necessity of organizing a survey specifically
focused on DA in visual RL. This section will delineate
the most salient differences in DA implementation between
visual RL and other domains. Further exploration of these
distinctions and the development of tailored DA techniques
for the visual RL scenario represent crucial directions for
future research.

Diverse Augmentable Data Types. Compared to typical
supervised or unsupervised vision tasks, RL data is inher-
ently more complex. On one hand, RL data encompasses
three distinct elements: state, action, and reward. On the other
hand, RL involves long sequences of sequential decision-
making data, known as trajectories. This complexity in data
types enables a more diverse and flexible approach to trans-
forming different data components in visual RL tasks. As
introduced in Section 3, when categorizing based on the
type of data being augmented, visual RL incorporates at
least three classes of augmentation: observation augmenta-
tion, transition augmentation, and trajectory augmentation.
Although existing works primarily utilize basic observation
augmentation [88, 190], recent progress in generative mod-
els, particularly diffusion techniques, is poised to facilitate
the development of more sophisticated and diverse DA strate-
gies in visual RL [59, 216]. This paradigm shift toward
sophisticated augmentation strategies shows great potential
in exploiting the inherent structure of RL data more com-
prehensively, promising significant advances in both sample
efficiency and generalization capabilities.

Distinctive Implementation Details. Due to the nonstation-
ary nature of RL, there are significant differences in the
optimal practices for applying DA in visual RL compared to
other scenarios. Firstly, contrary to supervised vision tasks
such as image classification, where heavy transformations
like Mixup [207] and CutMix [202] demonstrate notable
advantages over traditional image transformations, in visual
RL, random cropping has emerged as the most practical aug-
mentation technique [88, 141]. Consequently, the approach
to harnessing augmented data must be thoughtfully designed
to avoid potential destabilization of the optimization process
while effectively exploiting the generalization capabilities
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induced by DA [113, 198]. Secondly, the timing of aug-
mentation application is critical in RL [84], in contrast to
supervised learning tasks [43], due to the heightened time
sensitivity of augmentation in RL contexts. For example,
optimality-invariant augmentations such as cropping should
be implemented as early as possible to enhance sample effi-
ciency and expedite the RL training process. Conversely,
strong augmentations based on prior knowledge, exempli-
fied by color jitter, may interfere with RL training stability,
suggesting their optimal deployment during post-training
knowledge distillation phases.

Unique Underlying Mechanisms. Building upon the dis-
cussion in Section 6.3.2, contrary to the general understand-
ing of DA’s mechanisms, it has been discovered that DA
effectively addresses a bottleneck unique to RL: plastic-
ity loss [112]. This insight explains the remarkable extent
to which DA enhances the sample efficiency of visual RL
algorithms [190]. The distinctive mechanism through which
DA operates in this context necessitates a paradigm shift
in our approach to designing DA methods for visual RL.
Specifically, future work must adopt a novel perspective in
approaching DA for visual RL by focusing on mitigating
plasticity loss, a consideration that has been largely over-
looked in traditional DA approaches. This conceptual shift
represents a fundamental departure from conventional DA
strategies, opening promising new research directions in
visual RL.

6.5 The Role of Visual RL and DA in the Age of
Foundation Models

In recent years, foundation models, particularly large lan-
guage models, have emerged rapidly, showcasing extraor-
dinary intelligence and driving a new wave of Al innova-
tion [33]. In this era of large foundation models, we must
consider two key questions:

Does the classic RL paradigm, as represented by visual
RL, still retain research value and necessity? Addition-
ally, what role does DA play in this evolving landscape?

Clarifying the roles of visual RL and DA in the Age
of Foundation Models is important for two reasons. First,
it ensures that this survey’s content remains pertinent and
valuable in the current Al landscape. Second, it offers mean-
ingful guidance for the future development of visual RL and
DA. This section will address these two questions system-
atically. Primarily, the classic RL paradigm, exemplified by
visual RL, remains an indispensable component in achieving
super-human decision-making intelligence. Currently, there
are two primary approaches to leveraging foundation models
in decision-making tasks.
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1. The first approach leverages pre-trained multi-modal
large models for high-level perception and planning,
harnessing their comprehensive understanding and rea-
soning capabilities to enhance strategic decision-making
in complex environments [81, 99, 124]. In this context,
RL remains crucial for training the low-level control
policy. This policy generates specific actions based on
task-relevant features extracted by foundation models,
enabling effective agent-environment interaction [114,
159]. Consequently, RL bridges the gap between the high-
level perception and planning capabilities of foundation
models and the concrete action execution required in real-
world scenarios.

2. The second category of methods adopts the pre-training
paradigm for data-driven offline policy training [95, 139,
160], drawing inspiration from the success of foundation
models in other domains. In this paradigm, offline pre-
training can be viewed as seeking an optimal initialization
for online RL, while online fine-tuning is imperative for
achieving high-level decision-making intelligence [79,
128]. This approach addresses two critical aspects. Firstly,
due to the inherent distribution shift between offline data
and real-world scenarios, online RL is necessary to correct
these biases [201]. Secondly, only through exploration in
online learning can the agent transcend the limitations
of human-collected offline data and potentially surpass
human-level intelligence [87, 175].

Furthermore, DA will undoubtedly continue to play a
crucial role in visual RL and other RL tasks that utilize high-
dimensional features as input. Primarily, DA remains a direct
and effective method for expanding datasets and incorporat-
ing human prior knowledge [59, 216]. In decision-making
tasks such as robotic control, the availability of training
data is significantly more limited compared to language and
vision tasks. Consequently, designing more powerful DA
techniques is essential for training large decision models.
Moreover, as discussed in Section 6.3.2, DA effectively mit-
igates plasticity loss during online RL training. Without DA,
even when employing pre-trained visual encoders for feature
extraction, visual RL algorithms would still suffer from catas-
trophic plasticity loss, impeding efficient training [112, 199].
As foundation models continue to evolve, RL is tasked with
handling increasingly complex decision-making scenarios,
and agents are required to possess continual fine-tuning capa-
bilities. This evolution in the field underscores the critical
need for agents to retain adaptive capabilities, emphasizing
the continued relevance and importance of DA research and
application [19].

6.6 Limitations of DA

While DA has demonstrated significant benefits in visual RL,
as extensively discussed in the preceding sections, itis crucial
to acknowledge its limitations and potential drawbacks to
provide a comprehensive understanding of its applicability
and effectiveness.

1. The applications of DA are highly task-specific and
require extensive expert knowledge [141]. In practice,
DA’s effectiveness depends on prior knowledge of the
variations between training and test environments, allow-
ing for reliable specification of appropriate augmentation
techniques [83]. For example, in DMControl-GB, only
visual settings such as background colors are varied in
the test environments, and specific DA techniques, such
as random convolution, can effectively capture these prior
variations [35, 55].

2. DA effectively mitigates plasticity loss in single-task
visual RL, ensuring efficient training [112]. However, it
proves insufficient for maintaining adequate plasticity in
open-ended and continual RL scenarios, where significant
plasticity degradation occurs over extended training peri-
ods despite its application [1, 2]. This limitation calls for
more targeted interventions to maintain long-term plastic-
ity in open-ended, multi-task RL, essential for developing
adaptive foundational RL policies.

3. DA, which modifies observations after they are gener-
ated, provides versatile applicability without necessitating
direct simulator manipulation [88]. This characteristic is
particularly advantageous when the underlying simula-
tion environment is inaccessible or unmodifiable. How-
ever, in scenarios where direct access to the simulator is
available, domain randomization (DR) can generate more
diverse and precise data [17, 118]. Consequently, in spe-
cific fields such as robot learning, DR may prove more
effective than DA [66, 71].

4. Current DA techniques, primarily focused on image trans-
formations of observations, are insufficient for generating
truly diverse synthetic data. This limitation stems from
their reliance on human-defined priors, which constrains
the injection of novel, informative knowledge into the
data [55]. However, the advent of increasingly power-
ful pre-trained generative models presents a promising
avenue to overcome this bottleneck, potentially enabling
DA to produce substantially richer training data [59].

7 Conclusion
In this paper, we present a comprehensive survey of DA

in the paradigm of visual RL. We first propose the High-
Dimensional Contextual Markov Decision Process
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(HCMDP) as a general framework, elucidating the motiva-
tions for DA in improving sample efficiency and generaliza-
tion. The main body of this survey meticulously examines
existing related works, structured around two central themes:
how to augment data and how to effectively utilize the aug-
mented data. Subsequently, experimental results from widely
used benchmarks demonstrate the efficacy of these tech-
niques in visual RL. This survey also provides a list of current
challenges and potential directions for future studies. In the
following, we present a few suggestions and insights that are
intended to benefit the relevant communities.

1. Compact and robust representation is vital for acquir-
ing sample-efficient and generalizable visual RL agents;
therefore, it is necessary to apply appropriate representa-
tion learning strategies to tackle the specific challenges of
visual RL (Section 2.2). As a data-driven technique, DA
is an essential component of representation learning and
has great potential to be further explored (Section 2.3).

2. To fully harness the potential of DA, two complementary
aspects must be addressed: how to augment data (Sec-
tion 3) and how to effectively leverage augmented data
(Section 4). The key to further advancing these aspects lies
in two critical objectives: achieving semantic-level DA
(Section 6.1), and attaining an effective balance between
training stability and generalization ability (Section 6.2).

3. Beyond the common benefits such as regularization and
feature manipulation that DA provides across all deep
learning scenarios, there exists a unique mechanism
behind DA’s significant enhancement of visual RL train-
ing efficiency: its ability to effectively mitigate plasticity
loss. Overcoming this RL-specific bottleneck should be a
focal point for future research, emphasizing the develop-
ment of more targeted augmentation strategies and other
interventions (Section 6.3).

4. The difference between RL and SL should be given spe-
cial attention when applying DA in visual RL, including
fragile optimization process, the interactive data acqui-
sition process and its absence of ground-truth labels
(Section 6.4).

5. Visual RL, as a representative paradigm for learning con-
trol policies from high-dimensional features, remains a
crucial component in the current era of large founda-
tion models. DA, as a key element in achieving efficient
and generalizable visual RL, warrants continued in-depth
investigation (Section 6.5).

Overall, this survey strives to provide the first unified and
principled framework for the large body of thriving research
on DA in visual RL. We expect it to serve as a valuable
guide for researchers and practitioners, and stimulate more
inspiration in this fascinating field.
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