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Behavior Cloning Assisted Reinforcement Learning for Cable-Driven

Continuum Space Robots in Sparse Reward Environments
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Abstract—Deep reinforcement learning (DRL) has emerged as
a powerful tool for controlling cable-driven continuum space
robots (CDCSRs), offering a solution that bypasses complex
system modeling. However, DRL based on dense reward functions
(DRLDR) requires meticulous tuning of the reward structure,
whereas DRL based on sparse reward functions (DRLSR) ex-
hibits limited decision-making abilities, particularly in the space
environments. To avoid extensive fine-tuning and enhance the
performance in controlling CDCSRs, we propose the behavior
cloning assisted twin delayed deep deterministic policy gradient
(BATD3), a novel algorithm that integrates behavior cloning
(BC) with DRLSR. Firstly, a DRLSR-based control framework
is developed, which reformulates the control problem as a
Markov decision process (MDP). Building on this, the BATD3
algorithm is proposed, comprising two training phases: the prior
phase to train the BC model using demonstrations; the formal
phase to pre-fill the RL replay buffer with demonstrations and
successful BC-environment interaction trajectories, and optimize
the RL model with the assistance of BC. Finally, extensive
experiments are conducted in the MuJoCo environment to assess
the performance of BATD3 in controlling CDCSRs. The results
highlight the effectiveness, generalization, stability, robustness
and potential of BATD3, along with the practicality and feasibility
of the DRLSR-based control framework for CDCSRs.

Index Terms—Reinforcement Learning, Space Robotics and
Automation, Imitation Learning.

I. INTRODUCTION

N recent decades, cable-driven continuum space robots

(CDCSRs) have garnered significant attention due to light
weight, high flexibility and decoupled motor-machinery struc-
ture. These features make CDCSRs particularly promising for
applications such as clearing up space debris [1]. However, the
complex kinematics and dynamics models of CDCSRs pose
significant challenges for effective control [2], [3]. Meanwhile,
deep reinforcement learning (DRL) has made remarkable
progress in the domain of robotic control, including rigid
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Fig. 1. Overview of BATD3. A DRLSR-based control framework is developed
to reformulate the control problem as an MDP. Building on this framework,
the BATD3 algorithm is introduced, consisting of two phases: 1) the prior
phase to train the BC model; 2) the formal phase to pre-fill the replay buffer
with demonstrations and successful BC-environment trajectories, and train the
RL model with BC assistance.

manipulators [4], bipedal robots [5] and humanoid hands [6].
In particular, model-free DRL eliminates the need for explicit
environmental modeling, offering a approach to controlling
CDCSRs. However, selecting an appropriate DRL algorithm
for controlling CDCSRs remains a challenging endeavor.

DRL methods are broadly categorized into two types based
on the reward structure: those using dense rewards (DRLDR)
and those using sparse rewards (DRLSR). Compared to sparse
rewards, dense rewards provide detailed feedback throughout
the training process, often resulting in superior learning perfor-
mance and efficiency. However, DRLDR has several notable
limitations: 1) Its performance heavily depends on the design
of the reward function, which requires careful tuning [7]. 2)
The fine-tuning process demands domain-specific expertise,
limiting accessibility to non-specialists. 3) In complex and un-
certain space environments, system states are often subjected
to disturbances, which can compromise the accuracy of dense
reward functions and reduce the training stability.

In contrast, sparse reward functions avoid the complexities
of reward shaping and the need for domain-specific knowl-
edge, relying solely on whether the agent accomplishes the
task. As a result, DRLSR is more accessible to non-specialists.
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However, sparse rewards only provide limited feedback, lead-
ing to suboptimal decision-making and learning, particularly
for complex systems like CDCSRs. The complexity of CDCSR
systems, the need to avoid extensive fine-tuning, and the
challenge of enhancing decision-making capability of the
agent collectively highlight the pivotal issue: developing an
effective DRLSR method to control CDCSRs.

To address these challenges, we propose the behavior
cloning assisted twin delayed deep deterministic policy gra-
dient (BATD3) algorithm, a novel DRLSR algorithm that
integrates behavior cloning (BC) [8] with the twin delayed
deep deterministic policy gradient (TD3) [9], as illustrated in
Fig. 1. Firstly, a robust control framework based on DRLSR
is developed, which reformulates the control problem as a
Markov decision process (MDP). Building on this framework,
the BATD3 algorithm is proposed, consisting of two training
phases: the prior phase to train the BC model and the formal
phase to train the RL model. Specifically, the formal phase
includes two design components: 1) pre-filling demonstrations
and successful BC-environment interaction trajectories into the
RL replay buffer, which alleviates the absence of high-quality
data at the beginning of RL training; 2) optimizing RL with
the assistance of BC, avoiding the use of suboptimal actions
generated by the policy network of RL. Finally, extensive
experiments are conducted in the MuJoCo environment to
evaluate the performance of BATD3 in controlling CDCSRs.

The primary contributions of this paper are as follows:

e A CDCSR control framework based on DRLSR. We
present a novel control framework that reformulates CDCSR
control as an MDP, enabling integration with DRLSR.

e The BATD3 algorithm. BATD3 leverages BC to pre-fill
the replay buffer with high-quality data, providing appropriate
guidance, and to assist in RL optimization, preventing the use
of suboptimal actions.

e Experimental validation. Experiments in the MuJoCo
environment validate the effectiveness, generalization, stabil-
ity, robustness and potential of BATD3, alongside the practi-
cality and feasibility of the DRLSR control framework.

The remainder of this paper is organized as follows. Section
II reviews related work, including DRL for continuum robots
and DRL with demonstrations for robots. Section III outlines
the preliminaries, covering RL elements for CDCSRs and a
brief introduction to BC. Section IV elaborates BATD3 in two
training phases. Section V presents experimental results and
analysis. This paper is concluded in Section VI with directions
for future work.

II. RELATED WORK
A. DRL for Continuum Robots

DRL has significantly advanced the control of continuum
robots, which can be categorized into two primary methodolo-
gies: 1) DRLDR Methods. These methods have been widely
adopted to enhance the control performance of pneumatical
soft continuum robots. Specifically, Deep Q-Network (DQN)
with experience replay has been used to complete open-
loop tasks [3], while Deep Deterministic Policy Gradient
(DDPG) [10] has demonstrated success in close-loop tasks

[11]. Furthermore, this category of methods has gradually
been extended to cable-driven continuum robots. For example,
TD3 has been utilized to automatically optimize manipulabil-
ity during trajectory tracking [12]. Additionally, multiagent
DRLDR methods have been applied to control rigid robots
with multiple degree of freedoms (DoFs) [13] and dual-arm
CDCSRs [1]. 2) DRLSR Methods. Soft Actor-Critic (SAC)
[14] combined with random network distillation (RND) and
Actor-Critic Policy Gradient have been implemented to control
CDCSRs [15], [16]. However, these two actor-critic methods
oversimplify the control process: the former directly controls
joints instead of cables, while the later defines the control
problem in discrete state space and action space.

B. Imitation Learning for Robots

Although algorithms such as hindsight experience replay
(HER) [17] and RND enhance the learning efficiency of
DRLSR, their reliance on online interaction limits their effec-
tiveness in robotic control. In contrast, imitation learning (IL)
exhibits significant potential in controlling rigid robots. De-
pending on how IL integrates with RL, IL methods for robotic
control can be categorized as follows: 1) Pretraining Offline
and Fine-Tuning Online. This category utilizes IL, such as
BC, to pretrain the policy network, and fine-tune it during the
online learning stage. Techniques consist of combining n-step
DDPG and L2 regularization [18], and augmenting the original
loss function with the BC loss term [19], [20]. Furthermore,
the combination of BC and inverse reinforcement learning
(IRL) [21] has been extensively explored [22], [23]. Based
on the pretrained BC policy, these methods utilizes IRL to
derive the underlying reward function from demonstrations
and to fine-tune the policy through online agent-environment
interactions. 2) Independent IL and RL. This category is
derived from RL with demonstrations, which commonly pre-
fills the replay buffer with demonstrations to guide RL towards
reasonable learning directions [24], [25]. Building upon this,
an independent IL model integrates with RL to adjust actions
during both exploration and exploitation stages, enhancing the
decision-making capability of the agent [26]. However, this
method has been merely leveraged on rigid robots, and its
applicability to controlling complex cable-driven robots in the
harsh space environment remains uncertain.

III. PRELIMINARIES
A. Reinforcement Learning for CDCSRs

RL aims at accomplishing sequential decision-making tasks
within the framework of an MDP, defined as a tuple:
(S8, A,P,R,y), where S and A denote the state space and the
action space, respectively; P is the state transition function
P(si4+1]se,a), representing the probability of transitioning
from the state s; at time step ¢ to the next state s; 1 after taking
action a;; R and 7 signify the reward function and the discount
factor, respectively. Building upon the MDP tuple, the return

is defined as G, = ¥ 7*r,4«. Furthermore, the Q function
k=0

is denoted as Q(s;,a;) = E[G; | st,a;], which represents the
expectation of the return. RL optimizes the policy 74 (-|s) by
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maximizing the expected return, which in turn leads to the
learning of an optimal Q function Q*(s;,a,) = max Q(s;,a;).
7y

Regarding to CDCSRs, the state space, the action space and
the reward function are defined as follows.

e State space S. To describe the spatial relationship be-
tween the end effector of CDCSRs and the target point, the
state s should include the end effector position p, € R3, the end
effector velocity v, € R3, the target point position p;,, € R,
along with the distance d € R between the end effector and the
target point. Considering the free-floating base of CDCSRs,
the state s should also include the base posture 5, € R’ and
the base velocity 7, € R. Since the base is a rigid body, jj, is
composed of the center position p, € R? and the quaternion
attitude %, € R*, while 7, encompasses the center velocity
v, € R and the angular velocity @, € R®. Additionally, the
state s contains movement distances of all cables & € R*",
where n is the number of linkage segments in CDCSRs.
Therefore, the state of CDCSRs is defined as:

§= (p67V6aplaradaﬁba‘7b,6) € R4n+23' (1)

e Action space .A. Given that all cables of CDCSRs are
actuated by slide joints, and the action a € R** represents the
target positions of these slide joints. Especially, since cables
can only generate tension but not thrust, every action element
at time step ¢ satisfies a;; € [—1;,0], where i =1---4n and n;
signifies the maximum control signal of the i-th slide joint.

e Reward function R. Due to the sparse success-based
reward, the reward function R at time step ¢ is defined as:

1 =®(di1 <Ad), 2

where @(-) is the indicative function, and Ad is the success
threshold.

B. Behavior Cloning

IL can be broadly categorized into two paradigms, BC and
IRL. BC outperforms IRL in resource efficiency, training speed
and reliance on environment interactions, making it ideal for
enhancing the control performance of DRLSR.

BC utilizes supervised learning to derive a policy 75 (-|s)
by maximizing the likelihood as follows:

BC

T Ea ) 8
where DBC is a dataset of demonstrations and contains entire
state-action tuples (s,a) of demonstrations. For continuous
action space A, BC policy 75€(-|s) is typically modeled as
a Gaussian distribution N(p5¢(s), 65€(s)), where u£€(s) and
ch(s) are the mean and standard deviation, respectively.
Commonly, 65¢(s) is assumed to be a constant with no
dependence on the policy parameter 6. Therefore, (3) can be
derived as follows:

min  LPC(6) = a—uB(s)3.
in 10)= B le-uf OB @
Through iterative optimization of the objective in (4), the
loss function LBC€(6) decreases continuously towards 0. At
convergence, [,Lgc(s) closely approximates the action a, where

the tuple (s,a) is from DEC. Additionally, BC converges with

only a few demonstrations, with no need for online agent-
environment interactions.

IV. METHODS

This section details the proposed algorithm, BATD3, and
highlights its advantages. The training process of BATD3 is
divided into two phases: the prior phase to train the BC model,
and the formal phase to pre-fill the replay buffer and train the
RL model with the assistance of BC.

A. The Prior Phase: Training the BC Model

The primary goal of the BC model is to produce high
quality data and assist in updating the RL model. We employ
demonstrations to train BC and fix its parameters in the formal
training phase. As a result, the BC model will not suffer
degradation in distribution and catastrophic forgetting in the
next phase, which are commonly observed in the pretrain-
finetune frameworks. Additionally, as presented in Section
III-B, BC exhibits high accuracy in approximating expert
actions from demonstrations, making it highly effective in
aiding the next training phase. Besides, BC requires only
a few demonstrations, bypassing the need for online agent-
environment interactions. Therefore, while BC may suffer
from distributional mismatch [27], its high accuracy, sample
efficiency and stability make it an excellent choice as the
assisting model.

B. The Formal Phase: Training the RL Model

In contrast to on-policy RL algorithms, off-policy RL algo-
rithms, such as DDPG, SAC and TD3, reuse transition data
in the replay buffer when updating their policy networks and
Q networks, resulting in significantly high sample efficiency.
Among these algorithms, TD3 possesses a rapid training speed
and a concise algorithm structure, making it particularly suit-
able for integration with BC. Additionally, random ensemble
distillation (RED) [28] is utilized to improve the sample
efficiency. Therefore, TD3 integrated with RED is adopted as
the base RL backbone for BATD3.

To address the challenges of collecting valid data solely
through interactions between DRLSR and the environment,
the replay buffer DR is pre-filled with demonstrations in
advance of training RL. Furthermore, given the prohibitive
cost of collecting demonstrations in the space environment,
high-quality data must be augmented based on these initial
demonstrations. To achieve this, BC is employed to interact
with the environment and gather successful trajectories, pre-
filling the replay buffer. These trajectories, combined with
the original demonstrations, can help mitigate the scarcity of
superior data at the beginning of training.

The training process in this phase is divided into two
stages: the exploration stage and the exploitation stage. In
the exploration stage, RL interacts with the environment to
explore unknown regions of CDCSRs’ workspace and collect
interaction trajectories. As training progresses, the quality of
trajectories is ascending gradually. In the exploitation stage,
BC is leveraged to assist in updating the RL model. Specif-
ically, when constructing the TD target at each update step,
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the BC mean network u5¢ and the RL target policy network
ng,L generate actions as follows:

affl = ch(szﬂ),

= 7 (sy11).

&)

Following that, we employ the target Q network Q. (s,a)
to evaluate the action values of these two actions: ng =
Quy (5141,a%)) and ORE = 0y (s41,aRly). Since the softmax
function is continuous and differentiable, suitable for gradient
descent during updating neural networks, a discrete probability
distribution is constructed with this function to determine the

action a;41:

eXP(Pfo) . a1 = a?—fla

Play,1) = exp(p QL) +exp(p OFF) ©
exp(p 5)17) dout — Rl
exp(pQPS) +exp(pQRf)” T

where p is a scaling factor of Q values. By randomly sampling
from this probability distribution, the action @, is determined
and the TD target is computed as:

Vi =1+ Y0 (Si41,a141)- @)

Grounded in (7), the Q network and the policy network will
be optimized progressively.

Utilizing BC to assist in updating RL is highly beneficial.
During the initial period of this phase, the Q network may
struggle to accurately evaluate Q values. However, the use
of pre-filled high-quality data ensures that the batches used
for updates can minimize the impact of inaccurate Q values.
As training advances, the Q network’s evaluation accuracy
improves, allowing affl to serve as minimal guarantee for
a;+1. Since cables are composed of flexible materials and the
space environment is weightless, the tension in cables tends
to produce spikes and outliers, which causes RL to generate
suboptimal aﬂ‘l. By replacing aff;l with affl based on the Q
network’s evaluation, the training process avoids using poor
data, ultimately improving the training performance of RL.

V. EXPERIMENTS AND RESULTS

This section presents a comprehensive description of the
experiments to validate the effectiveness, generalization, ro-
bustness, stability and potential of BATD3. It includes the
experiment setup, results and detailed analysis.

A. Experiment Setup

1) Experiment System: The simulation environment, devel-
oped in MuJoCo, is based on the mechanical structure of
CDCSRs, as shown in Fig.2 (a). The CDCSR consists of a
free-floating base and 12 links, with all links interconnected
through a pair of cross-intersected hinge joints. These links
are divided into two groups, forming two linkage segments,
namely n = 2. In theory, CDCSRs possess two types of
cables: linkage cables and actuating cables. Each segment
is constrained and coupled by linkage cables, ensuring the
equal angles between adjacent links. Therefore, all links in a

- Actuating Cables End Effector
Segment I Segment 11

Fig. 2. The MuJoCo environment of CDCSRs. (a) illustrates the mechanical
structure of CDCSRs. (b) to (e) illustrate the process of reaching the target.

TABLE I
STRUCTURE PARAMETERS

Structure Shape Mechanical Parameters
Base Box m =500
[=0.6 I = diag(40,35,100)
Link Cylinder m=1.18
1=0.2,r=0.02 [I=diag(0.016,0.016,0.00037)
Joint L stiffness = 2.00

damping = 1.05

*All data use standard units.

segment behave as an integrated structure with 2 DoFs [29].
For simulation purposes, the effects of the linkage cables are
modeled by adjusting the stiffness and damping of the joints,
simplifying their physical representation. Meanwhile, each
segment is driven by 4 actuating cables which are modeled
by the tendon geometry in MuJoCo. The structure parameters
are detailed in Table I, using standard units.

Furthermore, the simulation time step is set to AT = 0.0025s
and the maximum episode length is configured as L.,; = 250.
Additionally, the i-th slide joint’s maximum control signal n;
is defined as m; =5, with i =1.--4n to ensure sufficient
operational space.

2) Task Description: Since reaching the target point is the
fundamental process in space debris cleanup, we perform this
task across different operation spaces of CDCSRs to access
the control performance of BATD3. Fig.2 (b) to (e) illustrates
a successful execution of the task. Based on different task
objectives, we define three categories of operation spaces:

e Anchor Space. For large-sized debris, CDCSRs entail to
reach all parts of the debris to ensure the accuracy of manipula-
tion. Therefore, the Anchor Space is defined as a cuboid space
with fixed dimensions, representing the simplified large-sized
debris, and the target points of demonstrations are located
within this Space.

e Floating Space. Due to stochastic floating in the space
environment, the position of small-sized debris may shift.
Therefore, the agent must accomplish tasks within the neigh-
borhood of original target points. Based on this, the Floating
Space is defined as the neighborhood U(p2 ., &r), where U
signifies the neighborhood space, pl, represents all target
points of demonstrations and & = 0.01m denotes the radius
of the neighborhood.
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Fig. 3. Training results of comparison experiments. Across all operation spaces, BATD3 outperforms all baselines in the training process.

TABLE 1T
EVALUATION RESULTS OF COMPARISON EXPERIMENTS

Operation Space BC BATD3 TD3wD RBL TD3 TD3+HER RLPD
Anchor K 0.54 0.76 0.37 0.26 0.00 0.00 0.34
Space lepi 179.44+67.3 144.6+632 1942+73.7 2155+£59.8 250.0+£0.0 250.0+0.0 210.94+59.8
Floating K 0.37 0.79 0.31 0.32 0.00 0.00 0.31
Space lepi 203.1+64.3 1358+63.7 210.6+63.3 204.8+£67.3 250.0+0.0 250.0£0.0 211.8459.6
Spatter K 0.25 0.65 0.37 0.35 0.00 0.00 0.16
Space Lepi 216.6+61.0 151.5+74.6 1953+71.9 204.1+£652 250.0+0.0 250.0+0.0 227.6+54.1

e Spatter Space. When cleaning up large-sized debris,
small debris may detach due to collision. To ensure CDCSRs
can capture these scattered debris pieces, the Spatter Space
is defined as U(p2,,&s), with & = 0.15m, which can fully
envelope the Anchor Space.

Experiments are conducted in these operation spaces and the
agent is trained using 10 demonstrations. Additionally, both
the end effector and the target point are modeled as spheres,
with their radii 7, = 0.0lm and r;,- = 0.018m, respectively.
The distance threshold Ad is defined as Ad = 0.03m, satisfying
re + riar < Ad, which ensures the end effector can physically
reach the target point. At the beginning of experiments,
CDCSRs remain stationary, with all driving cables situated
at their initial positions and the base is located at the origin
of the world coordinate system.

3) Network Architecture: The BC policy network is imple-
mented as an MLP with three hidden layers, each consisting
of 256 neurons with Tanh as the activation function. The RL
policy network and Q network are constructed as MLPs with
identical hidden layers but use ReL.U as the activation function.
The key hyperparameters are configured as follows: discount
factor y=0.99, learning rate /r =1 x 104, batch size B = 256,
soft updating factor § = 0.01 used in updating target networks,
noise clip parameter ¢ = 0.3 leveraged in the clip function of
TD3, softmax temperature parameter p = 10, large ensemble
size E =5 and number of critic targets Z = 2 used in RED.

B. Comparison Experiments

1) Baseline Description: BATD3 is evaluated against sev-
eral well-established algorithms. Among them, BC and TD3
are their original formulations. TD3+HER combines TD3
with HER, an effective approach to improving the sample
efficiency in robotic tasks with sparse rewards. TD3 with

demonstrations (TD3wD) integrates demonstrations into the
replay buffer of TD3. Additionally, TD3 regularized with the
BC loss function (RBL) incorporates the BC loss, shown in
(4), into original loss function LXE(¢) of RL’s Q network to
improve the decision-making ability. Besides, RBL employs
the soft Q-filtering [22] to adaptively balance the proportion
between LB€(0) and LR:(¢). Besides, Reinforcement Learning
with Prior Data (RLPD) [25] is a state-of-the-art DRLSR
algorithm that has demonstrated strong performance across
various robotic control tasks. All baselines leverage TD3
combined with RED as their core RL backbone.

2) Comparison Results: Comparison experiments are con-
ducted across three operation spaces. Fig.3 illustrates the train-
ing curves of success rate k, with the success rate of DRLDR
included as a standard reference. Each curve represents the
mean performance over 5 random seeds, with the shaded
region illustrating the 95% confidence interval. Furthermore,
100 evaluation episodes are conducted for all models to
evaluate their effectiveness. Similar to the exploration stage
of the formal phase, only the RL model interacts with the
environment during conducting evaluation experiments. The
corresponding success rate k and episode length /.,; are pre-
sented in Table II. As illustrated by Fig.3: i) The success rates
of TD3 and TD3+HER remain at zero throughout the training
process. Although HER exhibits remarkable enhancement in
utilizing DRLSR to control rigid robots, it is unsuitable for
controlling CDCSRs. ii) Due to the BC loss function L5¢(9),
RBL demonstrates the fastest initial training speed. However,
its overall performance is limited by BC, with its success rate
failing to surpass that of BC and even declining in the later
stage of training. iii) RLPD shows inferior performance across
all three operation spaces. Since RLPD enforces the use of
50% demonstration data in every training update, the limited
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Fig. 4. Training results of ablation experiments. The results validate the pivotal roles of pre-filled data, BC assistance, and RED.

number of demonstrations may be overexploited. In addition,
the utilization of environment-interaction data is relatively in-
sufficient, which limits data diversity and negatively affects the
overall training process. iv) In both the Anchor Space and the
Spatter Space, BATD3 and TD3wD achieve the best training
performance. In comparison, BATD3 exhibits superior charac-
teristics, including faster training speed, higher final success
rate and narrower confidence interval compared to TD3wD,
underscoring its advantages across multiple aspects. Moreover,
BATD3 outperforms DRLDR in all operation spaces. As
indicated by Table II, BATD3 achieves the shortest episode
length compared to all baselines, indicating its capability to
complete tasks in minimal cycles.

Given the operational requirements for CDCSRs to effi-
ciently clean up debris in the space environment, the control
method must facilitate rapid deployment, precise operation,
and swift task completion. Moreover, it must demonstrate
sufficient stability to maintain high performance under differ-
ent random conditions. BATD3 fulfills these requirements by
offering a faster learning process, higher success rate, shorter
task cycle and narrower confidence interval compared to all
baselines. Therefore, these attributes highlight the strong appli-
cability and effectiveness of BATD3 for controlling CDCSRs.

C. Ablation Experiments

Ablation experiments are conducted by separately remov-
ing BC assistance, pre-filled data and RED, to validate the
contribution of each design component and the improvement
in sample efficiency brought by RED. As shown in Fig. 4:
1) Removing BC assistance leads to a slower learning speed,
a reduced final success rate and a wider confidence interval,
particularly in the Floating Space. This underscores the role
of BC assistance in improving sample efficiency, enhancing
learning performance and ensuring the stability of BATD3.
2) Without pre-filled data, the success rate remains at zero
throughout the training process. This indicates that, without
the guidance of high-quality data, the agent is incapable of
extracting meaningful information from the space environment
and thus trapped in ineffective optimization, resulting in er-
roneous decision-making even with the assistance of BC. 3)
The absence of RED results in a decreased success rate and a
slower learning speed. This demonstrates that RED has indeed
improved the sample efficiency while also maintaining a rela-

tively high update-to-data ratio, which significantly enhances
training effectiveness.

These results affirm the pivotal importance of BC assistance,
pre-filled data and RED. Pre-filled data reduces ineffective
exploration during BATD3 training, which is especially crucial
in the complex and resource-constrained space environments.
Meanwhile, BC assistance enhances the performance and
stability for controlling CDCSRs, while RED significantly
contributes to improving sampling efficiency.

D. Validation of Dependence on Demonstration Quantity

Additional experiments are conducted to investigate the de-
pendence on demonstration quantity, using BATD3, TD3wD,
and BC with different numbers of demonstrations. As de-
scribed in Section V-A, the extents of the Floating Space
and the Spatter Space are affected by the number of demon-
strations. In contrast, the Anchor Space is a cuboid space
with fixed dimensions. Therefore, to mitigate the potential
impact of fluctuations in the extents of operation spaces, these
experiments are solely conducted in the Anchor Space. As il-
lustrated by Fig. 5: 1) Reducing the number of demonstrations
significantly degrades the performance of TD3wD and BC.
In contrast, BATD3 exhibits a moderate decline with different
numbers of demonstrations. 2) Across all demonstration quan-
tities, BATD3 outperforms TD3wD and BC in both the success
rate and the confidence interval during training. These results
highlight BATD3’s low dependence on demonstration quantity,
which validates that BATD3 possesses sufficient stability for
controlling CDCSRs in space environments, where acquiring
demonstrations is particularly challenging.

E. Generalization and Robustness Validation

1) Generalization Validation: Although the task objectives
of the three operation spaces are different, the process of
cleaning up space debris commonly contains various types
of objectives. Therefore, a model trained in one operation
space should be capable of generalizing effectively to others.
To assess this, models are evaluated over 100 episodes in
different operation spaces. The results, presented in Table III,
reveal the following: i) Due to the distinct shape of the Anchor
Space compared to the Floating Space and the Spatter Space,
the performance of the model trained in the Anchor Space
exhibits a certain extent of decline. However, compared to
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TABLE III
GENERALIZATION VALIDATION

Training  Validation Data L
Space Space Category Pt
Floating Original 0.79  135.8+£63.7
Anchor Space Current 0.49 183.2+70.6
Space Spatter  Original  0.65 151.5+74.6
Space Current 0.33 2004+71.5
Anchor Original 0.76  144.6+63.2
Floating Space Current 0.65 156.1+71.1
Space .
Spatter Original 0.65 151.5+74.6
Space Current 0.63 152.4+77.3
Anchor Original 0.76  144.6+£63.2
Spatter Space Current 0.65 158.1+£70.0
Space  Tpiating  Original 079 135.8+63.7
Space Current 0.67 151.7x71.1

the data in Table II, BATD3 remains better than baselines in
the Floating Space and as competitive as them in the Spatter
Space. ii) The performance of models trained in the Floating
Space and the Spatter Space manifests only a slight decline,
emphasizing BATD3’s ability to generalize across different
operation spaces.

2) Robustness Validation: The harsh space environment
demands that BATD3 possesses sufficient robustness to resist
noise and communication failures. To evaluate this, BATD3
is tested over 100 episodes under three different scenarios: 1)
Action Noise, represented as Gaussian noise Aa, ~ N(0,0,);
ii) Base Position Noise, modeled as Apy, ~ N(0,0}); iii)
Packet Loss, simulated by discarding s,4; with a probability p
and setting s, = ;. Results of these scenarios are presented
in Table IV. These results illustrate that despite the presence
of significant noise or a high probability of packet loss, the
performance of BATD3 merely exhibits a minimal decrease,
remaining under 20%.

Consequently, BATD3 not only possesses adequate general-
ization in cleaning multiple types of debris, but also maintains
high robustness against noise disturbances and communication
failures.

F. Validation of Non-cooperative Target Capture

To further evaluate the capability of BATD3 in addressing
complex scenarios such as non-cooperative target capture, the
target-following task is conducted in this section. In this task,
the end effector continues to follow the target, ensuring the
distance between them remains below the distance threshold

TABLE IV

ROBUSTNESS VALIDATION

Validation of dependence on demonstration quantity. These results confirm that BATD3 is more suitable for tasks with limited demonstrations.

Anchor Space

Floating Space

Spatter Space

Paramet
K [epi K [gp,' K lgp,'

0 0.76 144.6+£63.2 0.79 1358+63.7 0.65 151.5+74.6
0.5 0.75 148.2+624 0.79 137.7+£62.8 0.65 153.5+£73.1
o, 1.0 0.75 151.5+£60.7 0.77 144.1+£62.7 0.63 159.4+71.6
15 0.74 1559+£59.2 0.72 155.7+£62.8 0.59 168.5+69.9
2.0 0.71 165.3+57.6 0.70 164.8£60.7 0.57 172.7£67.2
0 0.76 144.6+£63.2 0.79 1358+63.7 0.65 151.5+74.6
5 0.01 0.74 147.1+£64.7 0.76 139.4+66.6 0.65 153.0£73.7
b 0.02 0.71 151.0+£67.0 0.70 147.4+£709 0.62 156.5+75.0
0.03 0.68 1552£68.9 0.67 152.0+£72.6 0.61 161.2+73.7
0 0.76 144.6+63.2 0.79 1358+63.7 0.65 151.5+£74.6
0.2 0.76 1445+£63.2 0.79 1359+63.7 0.65 151.44+74.7
) 04 0.76 1445+63.3 0.79 136.2+63.5 0.65 151.2+74.8
! 0.6 0.75 1445+643 0.79 136.4+63.2 0.64 152.5£75.3
0.8 0.75 148.4+63.4 0.77 143.0+£64.6 0.62 156.6+£75.0
1.0 0.00 250.0+0.0 0.00 250.0£0.0 0.00 250.0+£0.0

Ad. As the BATD3 agent can only observe the current position
of the target without access to its motion pattern or any form
of information exchange, the task represents a typical non-
cooperative target capture scenario.

Visualization of this target-following task is presented in
Fig.6 (b) to (e), the white line and the red line correspond
to motion trajectories of the end-effector and the target point,
respectively. These subfigures demonstrate that BATD3 effec-
tively controls the end effector to closely track the target as
it moves downward along a straight-line path. Besides, the
position errors and attitude errors of the free-floating base
are presented in Fig. 6 (a), which illustrates that the position
error and the attitude error are respectively maintained below
3 mm and 0.05 rad throughout the entire target-following
process. These results indicate that BATD3 ensures adequate
base stability in the target-following tasks of CDCSRs.

In summary, BATD3 shows promising potential in control-
ling CDCSRs during non-cooperative target capture missions.
This experiment further substantiates the superior control
effectiveness of BATD3.

VI. CONCLUSION

This paper addresses the challenges in controlling CDCSRs
through DRLSR, by introducing the behavior cloning assisted
twin delayed deep deterministic policy gradient (BATD3)
algorithm. Specifically, the control process of CDCSRs is
firstly formulated as an MDP to seamlessly integrate with
DRLSR. Build upon this framework, we present BATD3,
which includes two training phases: the prior phase to train
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Fig. 6. Experiments of the target-following task. The end effector tracks the
target as it moves linearly downward.

BC with demonstrations; the formal phase to pre-fill the replay
buffer with demonstrations and successful BC-environment
interaction trajectories, and train RL with the assistance of
BC for eliminating suboptimal actions generated by the RL
policy network. Finally, extensive experiments are conducted
in the MuJoCo simulation environment. According to the
experiments, the outstanding effectiveness compared to base-
lines, predominant generalization across different operation
spaces, low dependence on demonstration quantity, remarkable
robustness against disturbance and potential in performing
non-cooperative target capture missions are validated.

Future research directions could involve incorporating visual
imitation learning, developing DRLSR algorithms tailored to
multi-arm CDCSR systems, and implementing our algorithm
on physical robotic platforms.
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