JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021
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Abstract—For multichannel synthetic aperture radar (SAR)
ground moving target identification (GMTI) in heterogeneous and
strong clutter backgrounds, it is challenging to accurately detect
slow and weak targets when relying solely on the magnitude
of clutter-suppression residuals, due to the significant clutter
residuals and signal-to-noise losses. To address this, a detector
that leverages both the magnitude and phase information in
multichannel SAR-GMTI clutter suppression is proposed. For
a M-channel SAR system, the detection test is formulated as
the product of the residual magnitude from A/ -channel clutter
suppression and a phase factor derived from the interferometric
phase between two residuals from the first and last M — 1
channels. This phase factor captures the dissimilarity from the
clutter, enabling the suppression of strong clutter residuals and
improving the signal-to-clutter-plus-noise ratio (SCNR). Using
the product clutter model, a constant false alarm ratio detection
framework is designed. The receiver operator characteristic
metrics, obtained from simulations and real-data experiments,
validate the proposed method’s superiority over the state-of-
the-art techniques, and the detection sensitivity on the clutter
heterogeneity, correlation coefficients between pairs of clutter-
suppression residuals, and target parameters is analyzed for
practicality. In the X-band airborne radar GMTI experiments,
the minimum discernible input SCNR of -6 dB for target radial
velocity of 4 m/s and 0 dB for 2 m/s demonstrate the effectiveness
in detecting the dim targets within strong clutter.

Index Terms—Multichannel synthetic aperture radar (SAR),
slow and weak target detection, clutter residual suppression, joint
detection metric.

I. INTRODUCTION

Ynthetic aperture radar (SAR) systems mounted on the
S aircraft or spacecraft typically use an antenna array with
multiple phase centers to suppress ground clutter and improve
the signal-to-clutter-plus-noise ratio (SCNR) for effective tar-
get detection in air-to-ground surveillance [1]-[3]. In practice,
applying the clutter suppression such as the space-time adap-
tive processing (STAP) [2], and displaced phase center antenna
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(DPCA) often suffer from performance degradation due to
various real-world factors including the system’s non-linear
response and registration errors [3], [4], the terrain’s elevation
and type variations [5], [6], and the clutter internal motions [7].
Consequently, undesired strong and isolated clutter residuals
and significant target power losses may appear in the processed
outputs [8], [9], posing challenge for accurately detecting the
dim targets with the slow velocity and low signal-to-noise
ratio (SNR) for ground moving target identification (GMTI),
especially in heterogeneous clutter environments [10].

From the past few decades until now, various techniques
have been continuously developed for enhancing clutter sup-
pression performance in applications. For accurate estimation
of the clutter-plus-noise covariance matrix (CCM) in adaptive
clutter suppression processing, the sample selection algorithms
based on spectral similarity [11], exploiting the digital terrain
database [12], and using the machine learning approach [13]
have been investigated to obtain the secondary samples that
satisfy the independent and identically distributed (i.i.d.) con-
dition with the cell under the test. While these methods are
generally effective with sufficient clutter samples, their estima-
tion performance can severely degrade in heterogeneous envi-
ronments where ground clutter typically consists of backscatter
types with variable reflectivity, and the i.i.d. samples are
limited. Reducing the STAP processing dimensions can lower
the sample requirements and thus considerably alleviate the
challenge of obtaining i.i.d. samples [2], [14], [15]. However,
in highly heterogeneous detection backgrounds such as urban
areas [6], these methods may experience performance degra-
dation due to the limited i.i.d. sample availability, potentially
leading to increased false alarms due to isolated and strong
clutter.

Techniques based on the sparse recovery theory [16]-[18]
and matrix structure properties [19], [20] can improve the
CCM estimation accuracy under limited sample conditions.
Nevertheless, these methods often come with high compu-
tational complexities when applying to each pixel of SAR
images for enhanced accuracy, posing limitations for real-time
SAR-GMTI applications. Deep learning-based STAP meth-
ods [21]-[23] utilize neural networks to model the complex
nonlinear mapping between observed data and the space-
time spectra, enabling the precise reconstruction of the CCM
given sufficient labeled training data samples. In most practical
conditions that labeled training data samples are limited, the
above methods may suffer from performance degradation
due to overfitting of the model. Recently, semi-supervised
learning-based SAR automatic target recognition (ATR) has
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received increasing attentions due to excellent feature learning
capability with fewer labeled training data samples [24]-[26].
For instance, the SAR ATR method based on a Connfucius
tri-learnin paradigm [26] can accurately identify the extended
targets in single channel SAR images by learning from both
good examples and bad examples. However, for small-size
moving targets within dense clutter, it may be a challenge
to annotate targets and train the model as the difference
between the point targets of low SCNRs and isolated clutter
is extremely small relying solely on the SAR image.

Despite the above practical implementation requirements,
the afore-mentioned advanced clutter rejection methods, when
combined with careful registration and calibration processing
[27] on multichannel SAR data, can significantly enhance the
SCNRs of moving targets in the output, thereby improving
target detection performance. Since slowly moving targets of-
ten experience greater power losses during clutter suppression
processing [8], [28], target detection methods solely based
on the magnitude of residuals in clutter suppression [9],
[10], [29], [30] may fail to achieve an acceptable minimum
discernible velocity (MDV).

The along-track interferometric (ATI) phase, which is pro-
portional to the line-of-sight velocity of the backscatter in SAR
images [31]-[34], is often used to discriminate slow targets
from the clutter for target detection [35], [36]. The two-stage
detection method that combines the interferometric magnitude
and phase of dual-channel SAR [35] and the constant false-
alarm ratio (CFAR) detector based on a joint metric of the
interferometry magnitude and phase [36] have achieved a
reduced probability of false alarms (Pfa) and a smaller MDYV in
heterogeneous clutter backgrounds. Nevertheless, due to their
limited clutter suppression abilities, the weak moving targets in
a strong clutter background may experience degraded detection
performance.

Recently, a series of two-step detectors combining the
STAP and ATI techniques have been proposed [37]-[39], and
achieved significant improvements for SAR-GMTIL. In [37],
[38], the first stage, typically involving a test based on the
magnitude of residuals from multichannel clutter suppression,
detects potential targets with a low target detection threshold.
Then, the second stage further reduces false alarms, caused
by large clutter residuals in heterogeneous clutter backgrounds,
using dissimilar tests such as the ATI phase [37] and degree of
radial-velocity consistency [38]. For weak targets with low SC-
NRs, as the ATI phase is easily interfered by strong clutter sig-
nals, the two-step method [37] tends to have a low probability
of target detection (Pd). Additionally, a local-to-global detec-
tion scheme using a group of tests, including the multibaseline
ATT phases for fully exploiting the spatial degrees of freedom
(DoF) and the magnitude of clutter-suppression residuals, can
achieve a smaller MDYV in heterogeneous clutter backgrounds
[39]. However, the limitations of ATI phases for low-SCNR
targets may restrict the detection capacity for weak targets
under a strong clutter background. In contrast, the degree of
radial-velocity consistency [38] exploiting the interferometric
phase information between two clutter suppression residuals,
respectively outputted from DPCA in the datasets before and
after two channels, helps to mitigate clutter interferences for

low-SCNR targets. Whereas, this metric focuses on the radial-
velocity consistency across multiple pixels, and fails to detect
the small-size targets that occupy fewer pixels in SAR images.

In this paper, an interferometric phase of clutter-suppression
residuals aided multichannel SAR-GMTI method is proposed
to enhance detection performance of dim targets against strong
and heterogeneous clutter backgrounds. Assumes that an air-
borne SAR deploys M channels along the track direction
and works in the side-looking mode. The proposed detec-
tor integrates the magnitude of the output from M -channel
clutter suppression with the interferometric phase between
two residuals, accounting for the clutter suppression in the
datasets of before and after M — 1 channels, respectively.
Note that the interferometric phase between two residuals can
achieve more accurate estimation results for the targets with
low SCNRs over the classical ATI phase [37], [39], owing
to the anti-clutter ability during the phase measurements. By
leveraging both the magnitude and phase information of the
residuals, the proposed method significantly suppresses large
and strong clutter residuals, thereby enhancing the SCNRs of
the slow and weak targets. This is in contrast to methods
that rely solely on the magnitude of residuals [37], [40].
Furthermore, the theoretical statistics of the proposed detector
are derived using a product clutter model with Gaussian
noise, and then, a CFAR detection framework is established.
Through simulations and real-data experiments, the superiority
of the proposed method is validated by comparing it with
mainstream techniques for detecting dim targets. Additionally,
the computational complexity and detection sensitivity in re-
lation to clutter heterogeneity, correlation coefficients between
pairs of clutter-suppression residuals, and target parameters are
analyzed, providing practical guidance for applications.

Notations: *, ()T, and (-)" are the conjugate, transpose
and conjugate transpose, respectively. |- | denotes the modulus
of a complex number, and E]| denotes the mathematical
expectation. I is the identity matrix of appropriate size, and i
is the imaginary unit with i = —1.

II. RADAR SIGNAL MODEL

Consider an airborne SAR system using a linear antenna
array with M phase centers uniformly spaced by distance
d along the aircraft’s track direction, operating in a side-
looking mode. The geometric configuration between the SAR
and a ground moving target is shown in Fig. 1. During a
coherent processing interval, the aircraft maintains a constant
velocity v, along its track direction at the height h. For the
ground moving target, its azimuth and incident angles are
expressed as « and 6, respectively, and the radial velocity
along the radar’s line-of-sight direction is denoted by wv;.
The GMTI radar transmits electromagnetic waves through the
M channels and uses identical signal processing chains to
process the echo data sampled from each airborne radar array
element. Following this process, a ground moving target is
assumed to be properly match-filtered over the radar’s signal
bandwidth and coherently integrated, resulting in M range-
Doppler maps in the case of range-Doppler processing or
SAR imaging in the range and cross-range domains [41]. The
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Fig. 1. Observation geometry illustrating relationship between the M -channel
SAR system and ground moving targets in the side-looking GMTI mode.

along-track and cross-track directions are represented as the
azimuth and slant range in each range-Doppler or SAR image,
respectively. Subsequently, the spatial position alignment and
the elimination of the constant amplitude and phase differences
across the M SAR images are achieved through registration
and calibration processing, as outline in [27].

For a pixel & € {1,2,---,K}, let zk) =
[21(k), zo(k),- -, zp(k)]T represent a snapshot of the
M x 1 data vector from the processed M SAR images.
Here, z,,(k) denotes the complex signal in the m-th SAR
image obtained from the m-th channel, m € {1,2,--- ,M}.
Accordingly, the binary hypothesis test for detecting target
signals can be defined as

Hy : z(k) = c(k) + n(k),
H; : z(k) = s(k) + c(k) + n(k),

where Hj is the target-absent hypothesis, and H; is the target-
present hypothesis; c(k) and s(k) are the clutter vector and
the signal vector of a deterministic moving target, respectively;
the noise vector n(k) follows a zero-mean complex Gaussian
distribution, denoted as n(k) ~ CA/(0, 02I) with o2 being the
noise power.

Under hypothesis Hj, the amplitudes of the focused target
signal across all channels are assumed to be identical, such
that s(k) can be expressed as

s(k) = z(k)a(k),

(D

2)

where z(k) denotes the complex target amplitude, and a,(k)
denotes the target spatial steering vector. For a ground moving
target with radial velocity v,(k), as shown in Fig. 1, the target
Doppler fi(k) = 2v,(k)/X induces a phase shift of 27 ft(k)dvﬁ
as the array traverses the effective baseline spacing d/2 [42?],
where A is the radar wavelength. Then, a (k) is given by

a(k)
= {l,exp (mf‘(k)d) .-+ exp (izwft(k)%p_ 1)d>}:3.)

2vp
For the ground clutter from the environment, its statisti-
cal properties are often non-uniform due to the composite
scattering features such as buildings, trees, and roads. In
SAR images, the amplitude of clutter according to backscatter

characteristics is commonly modeled using the product model
[35]-[38], as follows

c(k) = A(k) x zo(k)ac(k), )

where A(k) € [0, 00) is the texture variable and describes the
amplitude variation of ground backscatter; zo(k) ~ CN (0, 02)
denotes the complex Gaussian-distributed amplitude, with zero
mean and an average power o2, while a.(k) is the spatial
steering vector associated with clutter as

ac(k)
= [Lew (12550 e <izﬂf°(’“><M”d)]T,

2v, 2v,
(5)

where f.(k) = 2v.(k)/A is the clutter Doppler frequency,
and v.(k) denotes the radial velocity of ground clutter. In
particular, we have a.(k) ~ [1,---,1]7, as v.(k) ~ 0 m/s.

To detect moving targets in a clutter-plus-noise environment,
it is essential to reject the clutter in SAR images. Without loss
of generality, under the adaptive matched filtering framework
that optimally combines the array outputs in the range-Doppler
or SAR images using an M X 1 optimal weight vector u(k)
[43], the clutter suppression result is given by

(k) = w(k)a(b)
R (k)a(k)
a' (k)R- (k)ay(k)
ter weight, R(k) is the CCM which can be estimated
from @ iid. samples selected in the vicinity of pixel
koas R(k) = &2 2(q)al(q) [44], and zr(q) =
[21(q), 22(q),--- , zas(q)]T denotes the snapshot of pixel k
with the i.i.d. sample ¢, being the M x 1 data vector. The

magnitude test based on the residual amplitude is then formu-
lated as [37], [38]

(6)

where u(k) is the optimal fil-

ly(K) P w,
Mo
o2, =

B(k) = (7)

where o2 represents the average power of clutter residuals,
and 7o is the detection threshold. H; is declared when f3
exceeds 1), and otherwise, Hy is declared.

III. PROPOSED METHOD

In this section, we propose a target detector by combining
the magnitude and phase information in multichannel clutter
suppression. The functional block diagram of this method is
shown in Fig. 2. In brief, the magnitude-based test 5 based
on the clutter suppression residuals with the M-channel SAR
images and the phase factor ¢ exploiting the interferometric
phase ¢ estimated over two clutter suppression residuals from
the previous and subsequent M —1 SAR images, respectively,
are firstly constructed. Then, the proposed target detection
metric v is formulated as the product of § and ¢, and its
statistics under the hypothesis H{ are estimated using the
clutter samples. Finally, the target detection threshold n under
a given Pfa (F;) is determined, and potential targets are
decided. In what follows, the details of the proposed method
are introduced.
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Fig. 2. Functional block diagram of the proposed method.

A. Target Detector

Initially, the SAR images from the first and last M — 1
channels are used to construct two data vectors for a given
pixel k as follows

z1(k) = [21(k), 22(k), - -+, 21 (B)] T,
22(k) = [22(k), 23(k), -, 2ar (k)] .

Note that z; (k) and z,(k) differ by a time delay of d/(2v,)
due to the platform’s along-track velocity (v,) across the
channel spacing d. Nevertheless, this time delay does not
impact the spatial steering vector, allowing the same filtering
processor u; (k) to be applied to both data vectors for clutter
rejection. This process yields

(8a)
(8b)

(9a)
(9b)

where u; (k) can be formulated using the following optimal
adaptive matched filter:

Rl_l(k:)aﬂ(k:)

k) = 10
= au(le H(k)au (k) (1o
=5 Z:: ), (10b)
.
ay (k [ , €Xp (i27rft(k)(]\/[2;1)d)] , (10c)
P

where R;(k) is the estimation of CCM with sample
data from the first M — 1 channels, and Z;(q) =
[21(q), 22(q),--- , zas—1(q)]" denotes the snapshot of pixel &
with the i.i.d. sample ¢, being the (M — 1) x 1 data vector,
while a (k) is the target spatial steering vector across the
M — 1 channels. During the clutter suppression processing,
the Doppler frequency fi(k) (in (10c)) of the moving target is
usually unknown before target detection. To reduce the output
power for potential targets, a group of candidates f1, fi2,- -
are used to search for an optimal one that can output a
maximum SCNR, as detailed by the image-domain optimized
STAP method [2].

Transformation

Statistical
Estimation
Magnitude
£ IBzH)
s f  CFAR
detection

\
Proposed test n
y=pBx¢ [~=® P(sH) |J—P

Phase factor

s=2(9)

P(g;H,)

Following the signal model in (1), we have z(k) =
c1(k) + ni(k) and z2(k) = ca(k) + na(k) under the hy-
pothesis Hy, while z;(k) = si(k) + c1(k) + ni(k) and
Zo(k) = so(k)+ca(k)+mnz(k) under the hypothesis Hy . Here,
s1, €1, and n; denote the target, clutter and noise signals in
z1, respectively, while ss, c2, and ns correspond to the target,
clutter and noise signals in z5, respectively. Assuming identical
channel responses and no additional errors such as channel
location uncertainties, the time delay d/(2v,) introduces a
phase difference related to the scatter’s Doppler frequency
between z; (k) and zy(k), expressed as

ea(k) = c1 (k) exp <i27rfc(k)2i>7 (1a)
P

Sg(k) =81 (11b)

(k) exp <127T ft(k);ip).

Accordingly, the residual signals y; (k) and yo(k) in (9) can
be reformulated under the hypothesis Hy as follows

Ho : y1(k) = ye1 (k) + yni (K),

() = (1) exp (120105 ) + k), (120
p

(12a)

whereas, under the hypothesis Hy, they are expressed as

Hl : yl(k) = y“(k) + ycl(k) + Ynl (k)a (133)
. d
ya2(k) = ys1 (k) exp (127rfl(k)2@p>

+ ye1 (k) exp (iQﬁfc(k)Qi) + yn2(k), (13b)
P

where i (k) = u (k)cy (k) and ys (k) = ut!(k)s; (k) denote
the residuals associated with the clutter and target signals,
respectively; yn (k) = ul'(k)ny (k) and yo (k) = ul(k)ny (k)
denote the residuals of the noise signals in z; (k) and zs(k),
respectively, with |yn (k)| = |yma (k).

Applying the complex interferometry over y; (k) and yo(k),
we extract the interferometric phase by

p(k) = arg [y1 (k)yz (F)],

where arg[-] denotes the phase of a complex, ranging in
[7’”371—]-

(14)



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

ATI phase estimation errors

50

—e—original signals 4
1t —&—residual signals %‘0

-@-Target SCNR e 140
0.8 g
=) 130
= Z
0.6 @)
g 2
= 120 2
0.4 =
)

110

Input SCNR (dB)

Fig. 3. MSE of ATI phase estimation versus input SCNRs for vy = 2 m/s.

Under the hypothesis Hy, assume that a large stationary
clutter residual signal present, where |yci| > |yn1]| = |ynz| in
(12), and thus, the interferometric phase ¢(k) through (14)
approximates 0. If the residuals are like noise signals after
the clutter suppression processing, i.e., |ye1| = |yn1| = |yn2]
in (12), the interferometric phase (k) reflects the phase
difference between two channels for the noise signal, and
usually distributes in [—, 7].

On the flip side, when a moving target signal is present
alongside clutter and noise signals in the pixel, the clutter
signal is nearly completely rejected and the residual of the
moving target signal typically exhibits a relatively large mag-
nitude. In this case, in (13), we have

lyar (k)] = [u! (k)s1 (k)| > lyer (k)| > |yni (k)]

After applying (14) across the residual signals y;(k) and
y2(k), one has (k) ~ 27 fi(k)5%. Assume that the moving

vp
target has a radial velocity v;(k), such that fi(k) = 2”—/\(“

Then, the radial velocity of the moving target can be estimated
using the interferometric phase (k) as
_

(k) = 5o (k).

The unambiguous velocity estimation by (16) ranges from
[—Avp/(2d), Avp/(2d)]. If |ue(k)| > Avp/(2d), an ambiguity
velocity with a period of Av,/d will appear in the estimation
[42]. Compared with the classical ATI phase over the dual-
channel original signals z1(k) and z2(k) in (8a) [31], [45],
[46], this ATI phase estimated from two residual signals y; (k)
and y» (k) in (9) reduces the clutter interference by suppressing
clutter, and thus, can improve the ATI phase estimation accu-
racy for the targets with low SCNRs. We conduct a simulation
comparison between the estimation of target ATI phases across
dual-channel original signals and two residual signals. In the
simulation, the real-world clutter data (refer to the description
in Section IV-B) are used, and the targets are simulated based
on the signal models in (2) and (3). The estimation results
of target ATI phases and the mean square errors (MSE) are
counted, respectively, and the results for v, = 2 m/s are shown
in Fig. 3. The output SCNRs of the simulated targets in the
clutter suppression processing are shown by the right vertical

(15)

(16)

axis. The less MSE for the ATI phases from residual signals
indicate more accuracy in target radial velocity estimation, and
the estimation improvements are especially significant for the
targets with lower input SCNRs.

In the analysis of (k) outlined above, a notable difference
emerges between large clutter residuals and moving targets.
Under the hypothesis Hy, suppose that a large residual signal
is present, which may cause false alarms when applying the
magnitude-based detection via (7). However, ¢(k) ~ 0, as
indicated by (12) and (14). As to the hypothesis H;, the
estimation of ¢(k) using (14) is approximately proportional
to the target’s radial velocity v (k) according to (15) and (16).
Thus, moving targets can be effectively distinguished from
large clutter residuals based on the value of (k).

Next, based on the estimation result 7;(k) and the spatial
structure across the two adjusted channels, the corresponding
steering vector for the residual can be constructed as

- T
A(’“)d)] — [Lexp ()T, (A7)

For large clutter residuals, the steering vector in (17) can be
approximated as by = [1,1]", since @;(k) ~ 0 m/s. Based on
this, we proceed to estimate the subspace similarity between
the residual and bg as

e(k)

b(k)= {1, exp (i27r

_ |b" (k)b |
/o (k)b (k)[[bfb|

where €(k) € [0,1] and is a function of the interferometric
phase (k). A lager e(k) indicates a greater similarity between
the residual and clutter.

By multiplying a phase-based factor 1 — ¢(k) with the
magnitude test S(k) that outputs from the M-channel clutter
suppression (see (7)), we obtain y(k) = B(k) x (1 — e(k)),
which further helps in rejecting the strong and isolated clutter
residuals. The phase factor 1 — e(k) is a function of @(k),
expressed as

(18)

o(k) = g (p(k)) =1 — e(k). (19)
As such, the novel target detector is formulated as
v(k) = B(k) x ¢(k) T n (20)

where the hypothesis Hy is declared when (k) exceeds the
detection threshold 7, and otherwise, the hypothesis Hy is
declared.

Following the CFAR detection rule [47], under the clutter-
plus-noise background, the statistics of the proposed test
should be estimated, so that the detection threshold 7 can be
determined with a constant Pfa regardless of changes in the
environment. In what follows, the statistical estimation under
the two hypotheses is detailed in subsection III-B, and the
CFAR detection process is summarized in subsection III-C.

B. Statistical Estimation

In complex environments, clutter data typically consists of
a mixture of backscatter types with varying reflectivity. As
described by the product model in (4), the texture variable
A can vary across pixels in SAR images, representing the
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backscatter changes in heterogeneous clutter backgrounds.
Various statistical models have been developed for A in
recent years [35]-[38]. For urban areas, which are critically
discussed herein, the inverse chi-square function has been
extensively used for SAR-GMTI applications [35], [37], and
the probability distribution function (pdf) of A is given by

X
M(;—@X'H) exp (_X621> , (1)

T'(x)

where I'(-) denotes the Gamma function, and the degree of
heterogeneity for the clutter background is reflected by the
texture parameter . A smaller value of x indicates a more
heterogeneous clutter background.

Using this model to characterize heterogeneous clutter back-
grounds, we now revisit the statistics of the proposed test .
From (20), ~y is formulated as the product of the magnitude test
[ and a phase test ¢. According to the theoretical derivations
in [37], [48] for the single-look case, the pdf of S under the
hypothesis Hy is given by

fa(d) =

) = X (x =¥

J(B,x;Ho m

(22)

where the texture parameter y can be evaluated using x =
1+ 5 with mo = EJ[|3|?] being the second moment
my —

over clutter samples, and x > 2 according to the nonnegativity
of the pdf. In practice, this estimator may be inaccurate,
and x can be estimated to achieve the required fit accuracy.
For a deterministic moving target, assume that its maximum
likelihood estimate of the magnitude test is w, and the pdf for
the hypothesis H; is formulated as

x(x — D)X
s x,wiHi) =
S L 2
x+1 x+2 4wf 23)
X o Fy ; i 1 7 |
2 2 U wix—148)

where 2 F(-) denotes the Gaussian hypergeometric function.

On the other hand, ¢ is a function of the interferometric
phase ¢, and thus, the pdf of ¢ can be derived from the pdf
of ¢. Based on the derivations in [35], [38], [45], [46], the
pdf of ¢ under the hypothesis Hy is given by

oy P(3/2)(1 = p?)peos(p — )
Folerpr2illo) = 5 2l = P eos? (o — 907
(1

_ 2
TP)QFI (17 1;1/2; p? cos? (p — gpc)) ,

(24)
+

where ¢, denotes the interferometric phase estimate for the
clutter residual, which is equal to 7 [38]; p represents the
correlation coefficient between y; and y., which can be
estimated across all residual samples as

|Ely1y5]|
HIMEEIRE

p= (25)

where 0 < p < 1.

When the target parameters ¢, and p; are known or esti-
mated using target samples. The pdf of ¢ under the hypothesis
H1 is

L(3/2)(1 — p®)pcos(y — ¢1)
fo (¢, p, i Hi) = 2/m(1 = p? cos?(¢p — )3 /2
(1—p )

S e YAICREE 1/2; p® cos® (¢ — @1)).

Unfortunately, given the pdfs of ¢ defined by the above
functions and the mapping relationship ¢ = g(y) from (17),
(18), and (19), it is intractable to analytically derive the pdf of
¢. Towards this end, a numerical approximation approach is
adopted. First, the interferometric phase ¢ is discretized over
the range from —m to m using a step size of g, i.e., Y1 =
—T, o = —T + g, 3 = —T + 2pp, - - ,pr, = 7, where the
size g is chosen to be extremely small to ensure calculation
accuracy, such as o = m/1000. The distribution probability

(26)

with respect to the discretized variable ¢;,l =1,2,--- L, is
computed by
> f Iy Py C;H
P((thO) = p:PL(SO 1284 0) ’ (278.)
p=1 fo(®p; ps pes Ho)
- ;H
P(QplaHl) _ fp(@laptawt, 1) (27b)

—L :
Py fo(@ps oy i3 Hi)

Then, ¢; = g(p;) is computed for each ¢; using (17),
(18), and (19), resulting in the sequence ¢1, @3, - ,¢r. The
distribution probabilities for the discretized variable ¢ €
{é1, -+ ,¢r} under the two hypotheses Hy and H; can be
estimated as

P(¢;Hp) = ZP ©1; Ho) (28a)
P(¢;Hy) = > P(p;Hy) (28b)
o1 € {p1, 902, oL}
s.t.q g(pr) = &
|pr — @] < €

where € denotes the quantification error, which is set as the
minimum and non-zero difference between any two discretized

variables in {¢1, P2, -+, L}
The above pdfs of ¢ are further normalized as

PloHy) = 5 ((bi fﬁl) (292)
Ploith) = = s, (290)

which ensures that ), P(¢:;Hp) = 1 and P P(¢:Hy) =1
in the numerical calculation.

Subsequently, using the relationship (k) = B(k) x ¢(k)
defined in (20) and assuming the statistical independence
between between (5 and ¢, the pdfs for v under the two
hypotheses can be approximated as

P(y; Ho)~ ZP ¢:Hy) fr, (£, x: Ho), (30a)

¢

ZP ¢ Hy) fr, (2 (30b)

’YaHl y X W5 Hl)

¢
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Fig. 4. Joint distribution characteristics of 5 and ¢ in homogeneous clutter background. (a) histogram, (b) theoretical pdf in (30a) with x = 162, p = 0.15,

and ¢ = 7, and (c) errors between the results in Fig. 4(a) and Fig. 4(b).
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and ¢ = 7, and (c) errors between the results in Fig. 5(a) and Fig. 5(b).

Given a Pfa, i.e., P, in target detection, the threshold 7 in
(20) can be determined by
+oo n
P= [ Pt =1 [ PaiHgs. G
n 0

Under the detection threshold 7, the corresponding Pd, i.e.,
Pd, is

+oo n
Py =/ P(y;Hy)dy =1 —/ P(y;Hp)dy.  (32)
n 0

The derivation of the proposed test statistics in (30) relies
on the assumption of statistical independence between the
magnitude test 5 and phase factor ¢. Theoretically, 5 and
¢ are not strictly independent in statistics, and appear to
be correlated for clutter and target residuals. Nevertheless,
through the following Monte Carlo simulations, it is found
that the correlation between 5 and ¢ has only little influence
on statistics of v and (30) can work with acceptable accuracy.

In the simulation of the hypothesis Hy, the homogeneous
clutter background (a constant CNR of 10 dB) and heteroge-
neous clutter background (CNRs varying from 15 dB to 50
dB) are created, and more details on the process can refer to
Section IV-A. The joint distribution characteristics of 8 and
¢ in the homogeneous clutter background are shown in Fig.
4, where Fig. 4(a) is the histogram of the data, Fig. 4(b) is
theoretical pdf in (30a) with estimated parameters ¥ = 162,
p = 0.15, and ¢, = 7, and Fig. 4(c) is the difference between
Fig. 4(a) and Fig. 4(b). The results in the heterogeneous clutter
background are shown in Fig. 5, where the theoretical pdf
in (30a) is obtained with estimated parameters ¥ = 2.1,

p = 038, and ¢, = =. In Fig. 4(c) and Fig. 5(c), the
differences between the histogram and theoretical pdf mostly
occur near 5 ~ 0 and ¢ = 0, and include both positive and
negative deviations. These differences are more significant in
heterogeneous clutter background, which implies the existing
corelation between 3 and ¢ for clutter residuals. Nevertheless,
in the proposed test v = [ X ¢, the products of S and ¢
at f =~ 0 and ¢ ~ 0 approximate zero, and these positive
and negative deviations may be partially canceled at v ~ 0
with (30a). The statistical estimation comparisons for 7 in
the homogeneous and heterogeneous clutter backgrounds are
shown in Figs. 6(a) and (b), respectively, where for a given
Pfa, the target detection thresholds 7 are calculated using (30a)
(marked with‘ideal independence’) and estimated via Monte
Carlo simulation(marked with ‘estimated’), respectively. In
the homogeneous background, (30a) can accurately predict
the CFAR statistics. For the heterogeneous background, small
deviations for 7 have occurred due to the correlation effects in
clutter residuals. Furthermore, the corresponding ROC curves
for targets with the input SNR of 25 dB and radial velocities of
2 m/s and 4 m/s in the heterogeneous clutter background are
depicted in Fig. 6(c). Specifically, under the given Pfa, the Pd
is determined by counting the number of target cells exceeding
the detection threshold. The results verify that the correlation
effects on the proposed CFAR statistics can be ignored.

Under the hypothesis Hjp, the target with an input SNR
of 25 dB and a radial velocity of 2 m/s is simulated in the
clutter background. The joint distribution characteristics of 3
and ¢ are shown in Fig. 7, where Fig. 7(a) is the histogram,
Fig. 7(b) is theoretical pdf in (30b) with estimated parameters
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Fig. 7. Joint dlstnbutlon characteristics of 8 and ¢ for the target with input SNR 25 dB and radial velocity 2 m/s: (a) histogram, (b) theoretical pdf in (30a)
with @ = 413, x = 162, p = 0.9878, and ¢¢ = 1.54, and (c) errors between the results in Fig. 7(a) and Fig. 7(b). (d) Pd estimation comparisons between

(30b) (‘ideal independence’) and Monte Carlo simulation (‘estimated’) for ~y.

w 413, x = 162, p 0.9878, and ¢; = 1.54, and
Fig. 4(c) is the difference between Fig. 7(a) and Fig. 7(b).
The result implies the existing correlation between § and ¢
for target residuals. However, this correlation effect on the
derived statistics of « ((30b)) is rather little in the following
comparisons. Given the 7, the Pd values are estimated using
(30b) (marked with ‘ideal independence’) and counting the
number of target cells exceeding the detection threshold via
Monte Carlo simulation (marked with ‘estimated’), respec-
tively, and the comparison result is shown in Fig. 7 (d). The
high-accuracy prediction results can validate the feasibility of
the independence assumption in this work. For more accurate
statistics, other modeling and estimation technologies [36],
[49] remain an open topic in future work.

C. Summary of the Proposed CFAR Detection

Based on the above theoretical performance analysis of the
proposed test, the main procedures for the CFAR detection are
summarized as follows.

o First, the adaptive matched filter, as given by (6), is
applied to the data vector z from the M-channel SAR
images, and then, the magnitude-based test /3 is formu-
lated according to (7).

Meanwhile, adaptive matched filtering with the previous
and subsequent M — 1 SAR images, respectively, as
shown in (9), outputs two residuals. Based on this, the
interferometric phase is estimated using (14), and the
phase test ¢ is constructed, as given by (19).

Next, the proposed target detection metric -y is formulated
as the product of the magnitude test 5 and the phase test
¢, as expressed by (20).

o Afterwards, estimate the statistical property of ~ through
(22), (24), (25), (27a), (28a), (29a), and (30a) over the
data samples, and determine the target detection threshold
n under a given P via (31).

« Finally, potential moving targets are detected by compar-
ing the test with 7.

During the above procedures, let M, K, and L represent
the channel number, the pixel number of a SAR image,
and the discretized number of the interferometric phase ¢ in
[—, ], respectively. The computational complexities for the
adaptive clutter suppression with filters u and u; are expressed
as O(M?3) and O((M — 1)3), respectively. Meanwhile, the
computational complexities for constructing and statistically
estimating the proposed test are O(K ) and O(L), respectively.
Therefore, the computational complexity for the proposed
detection process is O(M?) + O(K) + O(L).

IV. SIMULATIONS AND REAL-DATA EXPERIMENTS
A. Simulation Results

Simulation data based on the signal models described in
(2) to (5) are created to evaluate the target detection per-
formance, and the radar parameters are listed in Tab. 1. In
the simulation, there are 700 heterogeneous clutter samples
with varying CNRs ranging from 15 dB to 50 dB, randomly
distributed in the clutter background. Additionally, there are
300 homogeneous clutter samples, each with a constant CNR
of 10 dB. A moving target is simulated and added at the sample
position 800. To account for inconsistent channel responses, a
random channel phase error with zero mean and a variance of
0.5° is introduced. The above parameter settings are similar
to the real-data conditions in Section IV-B, leading to the
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and 4, respectively.

average dual-channel correlation coefficient about 0.9965 and
the estimated degree of heterogeneity x = 2.1 in statistics.
To comprehensively evaluate the detection performance of
the proposed method, it is compared with several state-of-
the-art techniques, including: the generalized likelihood ratio
test (GLRT) from [40], the magnitude-based method in multi-
channel SAR-GMTI clutter suppression (see (7)), the dual-
channel along-track interferometric magnitude from [35], the
DPCA test from [37], the ATI-phase detection from [31],
[45], [46], the joint metric of the interferometry magnitude

TABLE I
SIMULATION PARAMETERS

Radar wavelength (A) | 0.018 m
Aircraft velocity (vp) 102 m/s
Channel number (M) 4

Channel spacing (d) 0.25 m

and phase (IMP) from [36], the two-step methods combining
the DPCA and ATI (DPCA+ATI) and the magnitude and ATI
(Mag+ATI) from [37], and the optimal fusion-based method
in [39].

To begin with, the simulation results of the compared tests
with the target input SNR of 25 dB and radial velocity (v;) of
2 m/s are shown in Fig. 8. The adaptive clutter suppression
is performed on four-channel dataset with known target radial
velocity for the GLRT, the Magnitude test and the proposed
method, while the interferometric magnitude, the ATI phase,
the IMP, and the DPCA are constructed with dual-channel
dataset from channels 1 and 2. By comparing Figs. 8(a) and
(b), it can be observed that most clutter can be effectively
rejected in the multi-channel adaptive clutter suppression,
although some strong clutter residuals present due to hetero-
geneous clutter. In Fig. 8(c), the interferometric magnitude
method struggles to suppress the strong clutter, making it
challenging to identify the true target with a low SCNR in the
clutter background. For the GLRT in Fig. 8(d), the IMP in Fig.
8(f), and the DPCA test in Fig. 8(g), the target and some strong
clutter both exhibit large values, potentially leading to false
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alarms. In Fig. 8(e), the ATI phase of the target is relatively 0.2 x=215=03 %107 v
small, whereas the ATI phase for certain clutter seems to be ——x=21,p=04

large due to channel errors and random noise, which may 015N\ :‘:’;iilp’i :og" |
result in degraded target detection performance. In contrast, N\ = 7,p = 04 5

the proposed test demonstrates significant improvement and » :iiﬁf’:jéf:}

most clutter can be effectively suppressed, making the true 2011 ——x=11,p =04 | 1

target stand out more prominently against the background. —x=11,p=05

Next, Monte Carlo simulation is employed to estimate the 0,05
receiver operator characteristic (ROC) for the compared meth-
ods, where the Pfa (7%) and Pd (F;) are estimated by counting
the numbers of the clutter cell and target cell exceeding the 0 P 0 . - 0 o
threshold, respectively. The ROC curves depicting Pd versus ¥ (a8
Pfa for the target with an input SNR of 25 dB and v, = 2 m/s
are shown in Fig. 9(a), which demonstrate that the proposed
method can achieve a higher Pd at low Pfas. The magnitude-
based test (as in (7)) outperforms the DPCA test with two channels by increasing the spatial DoFs in clutter rejection,

Fig. 12. Theoretical pdfs of « with different parameters under Hp.
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vr = 2 m/s, respectively.

and thus leads to a better Pd under the same Pfa. Furthermore,
Fig. 9(a) indicates that the GLRT method struggles in the
presence of isolated and strong clutter, as shown in Fig. 8(d),
while both the interferometric magnitude (InMag) and ATI-
phase test fail to adequately suppress clutter, showing poor
target detection performance under low Pfas.

At a fixed Pfa, ie., P = 1075, we further compare the
ROC of the proposed method with those of the IMP, the
two-step detectors combining DPCA and ATTI phase, the two-
step detector based on the magnitude test and ATI phase,
and the method by optimal fusion of the magnitude test and
multi-baseline ATI-phase tests, respectively. For the two-step
detectors, the Pfas for the magnitude and DPCA tests are both
set to 107 in detection, followed by a Pfa of 10~! for the
ATI-phase test in the second detection. The ROC curves for
Py versus varying input SNRs with v, = 2 m/s, v, = 3 m/s
and v, = 4 m/s are presented in Figs. 10(a), 10(b), and 10(c),
respectively. Those ROC curves for Py versus v, with input
SNRs at 25 dB, 30 dB, and 35 dB are shown in Figs. 10(d),
10(e), and 10(f), respectively. Seen from the ROC curves in
Figs. 10(a), 10(b), and 10(c), the proposed method consistently
has a higher Pd under the low input SNR, which can obtain a
lower minimum discernible SCNR. Compared with the results
in Fig. 10(d), the proposed method can achieve a smaller MDYV,
and shows significant advantages in detecting the dim targets
with low SNRs within the heterogeneous clutter background.
For high-speed targets when v, exceeds the unambiguous
velocity range ([—3.78m/s, 3.78m/s]), the ROC curves of the
compared methods repeat in cycle, and the high-speed targets
with v, in blind-detection areas (P < 1) will miss detection.

Furthermore, the ROC using different spatial DoF is esti-
mated based on the above data. The Py versus channel number
M for the input SNRs of 25 dB and 30 dB are shown in
Figs. 11(a) and 11(b), respectively. In Fig. 11(a), the proposed
method has a higher Pd with larger M until achieves the max
value 1. When the input SNR increases to 30 dB, as shown
in Fig. 11(b), the Pd of the proposed method has already
been 1, and thus, becomes insensitive to M. For the compared
methods, as constructing the IMP, DPCA, and ATI tests only
exploits dual-channel dataset, the detection performance is
not sensitive to M. The magnitude test using multi-channel
data in clutter suppression can be sensitive to M, and the

two-step method by combining the magnitude and ATI tests
outperforms the two-step method using DPCA and ATI tests
owing to more spatial DoF. Additionally, with limited spatial
DoF M = 3, as shown in Fig. 11, the proposed method
may suffer from the performance loss for the target with a
smaller SNR and a slower radial velocity, but it can still
achieve significant performance improvements compared with
mainstream methods.

Subsequently, the ROC sensitivity regarding the texture
parameter y and the correlation coefficient p between two
clutter-suppression residuals is analyzed. Based on the statis-
tics in (22), (24) and (30a), the theoretical pdfs of v with the
texture parameters ¥ € {2.1,7,11} and residual correlation
coefficients p € {0.3,0.4,0.5} under the hypothesis Hy are
shown in Fig. 12. The smaller value of x can represent a more
heterogeneous clutter background. It can be seen from Fig. 12
that the distribution tails of v at large values become heavier
for the smaller x and the larger p, which potentially result in a
higher Pfa during target detection. With the pdfs and (23), (26),
(31), and (32), the ROC curves of Py versus P are depicted in
Fig. 13, where Figs. 13 (a), 13 (b), and 13 (c) correspond to
the targets with w = 20, v, = 2 m/s, w = 20, v = 4 m/s, and
w = 100, v; = 2 m/s, respectively. In the curves, the proposed
method exhibits a higher Pd under the same Pfa for the larger
x and the smaller p, implying improved detection performance
in a more homogeneous clutter background and with a lower
corelation effect between the two clutter-suppression residuals.

B. Real-data Experiments

To evaluate the target detection performance of the proposed
detector, we utilized the real data collected by an airborne four-
channel X-band SAR with VV polarization that the vertical
polarization is both transmitted and received by the radar in
urban areas of China. Specifically, the aircraft flew with a
velocity of approximately 102 m/s at the altitude about 510
m. A uniform linear array is installed along the aircraft’s track
direction, consisting of four sub-arrays (channels) with the
spacing between adjacent channel being 0.25 m. During the
data collection, the system operates in the side-looking mode
to transmit the linear frequency modulation signals with the
whole antenna aperture at a wavelength of 0.018 m, and then,
receives the echoes from each channel individually. For the
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dataset, the CPI contains 512 pulses with a pulse repetition
frequency of 800 Hz. In data preprocessing, raw SAR data are
subjected to imaging, channel coregistration and balancing as
described in [3]. Then, four SAR images with a resolution of
3m x 3m in the range and azimuth directions are generated.

For the real-data clutter suppression, the clutter samples
for estimating the CCM are selected based on the clutter
interferometric phase similarity with the threshold of 0.1
rad (i.e., < 0.1 rad), and the filter weights are constructed
using the method in [50]. For the scenario, the azimuth-range
images before and after clutter suppression are shown in Fig.
14(a) and Fig. 14(b), respectively. As observed in Fig. 14(b),
most clutter has been effectively suppressed, although some
strong residuals remain, which may represent potential moving
targets or clutter. With all the residual samples, we estimate
X = 2.1 to ensure a root mean square error of 0.12 x 10~7 in
statistical modeling, implying a high degree of environmental
heterogeneity, and the histogram and estimated pdf under the
hypothesis Hy are shown in Fig. 15(a). On the other hand,
two residuals obtained from clutter suppression, one from
the afore-three-channel dataset and another from the after-
three-channel dataset, respectively, are used to estimate the
interferometric phase ¢ via (14), forming the basis of the
proposed phase term in (19). With p ~ 0.38 and . = 7 based
on two residuals, the statistics of ¢ is estimated by (24), and
then the statistics of « under the hypothesis Hy are estimated
using (30a). The histogram and estimated pdfs for ¢ and v are
shown in Figs. 15(b) and 15(c), respectively. It can be seen
that the derived pdfs align with the measurements.

Next, the compared methods are performed with the same
Pfa (10~9) for target detection. Specifically, the local detection
Pfas of the two-step detectors are set to 107° and 107!,
respectively. As to the optimal fusion-based method, the auto-
sensing process is first conducted with the constant target
parameters, i.e., the MDV of 0.5 m/s, the minimum discernible
SCNR of 10 dB, and a high overall Pfa of 1074, leading to 475
potential targets. Then, the cognitive detection is applied on
the potential targets using the Pfa of 1076, Consider that the
vehicle (in size of 2.8 m X 5 m in practice) would occupy one
to two pixels. Based on the detected pixels in each compared
method, the target pixel clustering based on the target radial
velocity consistency and spatial distance is further applied for
accurately obtaining each potential target. Additionally, given
that moving targets exhibit shifts along the azimuth direction
due to their non-zero radial velocities during the SAR imaging
process, the detected targets are further relocated in the SAR
images. This relocation is performed based on the relationship
between the target radial velocity v, and the azimuthal dis-
placement Az, expressed as Az = v, X R/v,, where R denotes
the target slant range. The target detection, cluster and azimuth
relocation results for the compared methods are shown in Fig.
16, where the detected targets are marked with red triangles,
and their relocated locations in the SAR image are highlighted
with green triangles. It is noted that some potential targets
near the edges of the SAR images may fall outside the image
boundaries following the relocation processing. Additionally,
due to the lack of prior knowledge about ground moving
targets in the SAR images, the relocated targets found on or
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Fig. 16. The real-data target detection and relocation results for the compared methods under P = 10~6: (a) IMP, (b) two-step detector with DPCA and
ATI tests, (c) two-step detector with the Magnitude and ATI tests, (d) optimal fusion-based method, and (e) the proposed method, respectively (Red triangle:

detected target; Green triangle: related location).

TABLE 11
COMPUTATIONAL TIME COMPARISONS

Method Statistical Estimation | Total Detection
IMP 1.6577 s 3.8456 s
DPCA and ATI 1.4956 s 3.7623 s
Magnitude and ATI 1.5067 s 4.1612 s
Optimal fusion method 114.3211 s 125.8273 s
Proposed method 21.2326 s 24.2121 s

near roads (considering the relocation errors), are assumed
to be true targets. In Figs. 16(a), 16(b), 16(c), 16(d), and
16(e), the potential targets are 9, 11, 12, 18, and 15 for the
IMP, the two-step detection with DPCA and ATI tests, the
two-step detection with magnitude and ATI tests, the optimal
fusion-based detector, and the proposed method, respectively.
It can be observed that miss detection of some potential targets
occur in the first three methods under the Pfa of 1075, In the
Figs. 16(d) and 16(e), where the detected targets away from
roadways (marked with red circles) may be false alarms. Note
that the proposed method can effectively detect the potential
targets that are relocated near roadways, and detect fewer false
alarms compared with the optimal fusion-based approach.
Based on the real SAR images, the computational com-
plexities for the compared methods are estimated. The SAR
image contains 501x512 pixels in range and azimuth plane,
and the processing chain, including the data coregistration
and balancing between channels, test construction, statisti-
cal estimation, and target detection, cluster and relocation,

is performed in each method with Matlab R2021a on the
DESKTOP-ULV6L48 (with 11th Gen Intel(R) Core(TM) i7-
11800H at 2.30GHz and the random-access memory of 32
GB). The computational time of the statistical estimation
and total detection process is recorded in second by Tab.
II. It is observed that the optimal fusion method is most
time-intensive, followed by the proposed method, while the
IMP method and the two-step detectors consume less time.
Specifically, the statistical estimation process in the proposed
method requires slightly more time in the real-time processing.

Moreover, the ROC curves in the real-data clutter back-
ground are predicted by adding simulation targets. The targets
are simulated based on the signal models in (2) and (3), and
randomly added in the real-world clutter background. As the
noise power is unknown in the real dateset, the target signal
power is set according to the input SCNR, and the smaller
input SCNR can reflect the more dense clutter case compared
with the target. For each target, we repeat the simulation
process for 1000 times, and then, evaluate the ROC of the
compared methods. The target detection performance of the
compared methods under P = 1076 is shown in Fig. 17,
where Figs. 17(a), 17(b), and 17(d) are the Pd versus input
SCNRs for v,=2 m/s, v,=3 m/s, and v,=4 m/s, respectively,
while Figs. 17(d), 17(e), and 17(f) are the Pd versus target
radial velocities for input SCNRs of 0 dB, 10 dB, and 25 dB,
respectively. In Fig. 17, the output SCNRs of the simulated
targets in the four-channel clutter suppression processing are
shown by the right vertical axis. Based on the ROC curves, the
MDV and minimum discernible input SCNR (for Py > 0.95)
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Fig. 17. ROC curves comparing the performance of different detection methods under Py = 10=96: (a) Py versus input SCNRs for v = 2 m/s, (b) Py versus
input SCNRs for vy = 3 m/s, (¢) Py versus input SCNRs for vy = 4 m/s, (d) P versus v; for an input SCNR of 0 dB, (e) Py versus v; for an input SCNR

of 10 dB, and (f) Py versus vy for an input SCNR of 25 dB, respectively.

TABLE III
DETECTION PERFORMANCE COMPARISONS

Method Minimum Discernible Input SCNR (dB)

MDV (m/s)

IMP 25 (vr: 2 m/s); 22 (ve: 3 m/s); 20 (vr: 4 m/s)

1 (input SCNR: 25 dB)

DPCA and ATI 12 (vr: 2 m/s); 10 (vr: 3 m/s); 10 (vr: 4 m/s)

2.5 (input SCNR: 10 dB); 0.5 (input SCNR: 25 dB)

Magnitude and ATI 8 (vr: 2 m/s); 6 (vr: 3 m/s); 4 (vr: 4 m/s)

1.5 (input SCNR: 10 dB); 0.5 (input SCNR: 25 dB)

Optimal Fusion 2 (vr: 2 m/s); 0 (vr: 3 m/s); 0 (vr: 4 m/s)

2.5 (input SCNR: 0 dB); 1.5 (input SCNR: 10 dB); 0.5 (input SCNR: 25 dB)

Proposed 0 (vr: 2 m/s); -4 (ve: 3 m/s); -6 (vr: 4 m/s)

2 (input SCNR: 0 dB); 1.5 (input SCNR: 10 dB); 0.5 (input SCNR: 25 dB)

for the compared methods are recorded in Tab. III. It can be
observed that the proposed method can obtain a smaller MDV
and a smaller minimum discernible SCNR in comparisons.
Thus, the results can reliably validate the effectiveness of
the proposed method in practical applications and verify the
significant advantages in GMTI over the compared methods.

V. CONCLUSION

For a M-channel synthetic aperture radar (SAR) operating
in the side-looking mode for ground moving target identifi-
cation (GMTI), this paper proposes a novel target detector
that combines the magnitude output from M -channel SAR-
image clutter suppression with the phase term derived through
the interferometry between two residuals of the first M — 1
and the last M — 1 channels, respectively. By incorporating
the interferometric phase information between these residu-
als, the proposed method enhances the target-to-background
contrast compared to tests solely based on the magnitude
in multichannel clutter suppression. Furthermore, under the
product-model clutter and Gaussian noise background, an
approximate statistics of the proposed detector are derived
theoretically, and the constant false alarm ratio detection is

formulated. According to the receiver operator characteristic,
predicted based on simulations and experiments, the proposed
method shows high robustness against the heterogeneous clut-
ter background, and achieves improved minimum discernible
velocity and minimum discernible signal-to-clutter-plus-noise
ratio, compared to state-of-the-art methods. These detection
performance improvements can provide significant advantages
in detecting slow and weak targets in practice.

Additionally, from the experimental results for the computa-
tional complexity, the proposed method requires slightly more
processing time to accurately estimate the test statistics for
determining the detection threshold. Future work will focus
on developing more efficient estimation technologies for the
proposed test statistics and expanding its applications to a
broader range of scenarios, including the marine environment
and the aerial targets.
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