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Abstract—Space teleoperation significantly extends human
reach in space missions. However, traditional approaches are
constrained by factors such as the reliance on accurate dynamic
models and the risk of operator fatigue during prolonged tasks.
Additionally, while data-driven intelligent approaches reduce the
need for prior knowledge, they have yet to adequately address
the time delay issues inherent in these systems. To overcome
these challenges, we introduce the Belief State Actor-Critic
(BSAC) method, the first deep reinforcement learning approach
tailored for space teleoperation capture tasks within a bilateral
control framework. We first establish a generalized agent-based
architecture for space teleoperation, shifting decision-making
from human operators to autonomous agents. Following a com-
prehensive analysis of the time delay challenges, we propose the
BSAC algorithm, which integrates state augmentation and belief
state techniques to mitigate the effects of delays in teleoperated
Markov decision processes. Extensive experiments are conducted
on the MuJoCo simulation platform, modeling a real hardware
system across various scenarios. The learned policies are then
successfully transferred and validated in a real-world setup,
demonstrating the effectiveness and robustness of BSAC. In
summary, our results support the feasibility of agent-based
frameworks capable of overcoming time delay challenges in space
teleoperation.

Index Terms—Space teleoperation, bilateral control, agent-
based, time delay, deep reinforcement learning (DRL).

I. INTRODUCTION

W ITH the advances in teleoperation technology, space
robots have significantly extended astronauts’ capa-

bilities in space missions, playing a crucial role in On-
Orbit Servicing (OOS) tasks, such as satellite capture, repair,
debris removal, and the assembly and maintenance of large
space structures [1]–[4]. The most common control modes
in teleoperation include teleprogramming control, bilateral
control, and virtual predictive control [5]. In teleprogramming
control, the operator only issues high-level commands, and
the space robot autonomously executes the task [6], [7].
However, this approach demands a level of intelligence from
the robot that surpasses current technological capabilities. As
a result, the more widely used control modes are bilateral
control and virtual predictive control. Both are forms of direct
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Fig. 1. AI agent replacing human operators in remote space robot operations.

teleoperation, which address time delays caused by data trans-
mission, processing, and inference in the teleoperation process
by either complex controller designs [8]–[10] or simulation
of the remote environment at the master end [11], [12] to
mitigate the impact of delays on decision-making. Despite
their effectiveness, these techniques often neglect the human
factor. For instance, adults can typically maintain high levels
of concentration for only 20-30 minutes [13], and stress further
diminishes this focus [14]. Moreover, the remote operation of
space robots requires extensive training, and even with this
preparation, the operator’s real-time performance remains un-
certain. With the rapid advancements in artificial intelligence,
an intriguing question emerges: can an AI agent, such as the
one illustrated in Figure 1, take over teleoperation tasks and
perform them more efficiently, accurately, and consistently
than a human operator?

Recently, Deep Reinforcement Learning (DRL) has
achieved significant breakthroughs across various domains,
including gaming [15], industrial control [16], and large lan-
guage models [17]. DRL has also been widely employed in
space robotics, particularly for tasks such as target capture and
trajectory planning for robotic arms. For stationary targets,
Soft Q-Learning was applied to achieve target capture with
both single-arm and dual-arm configurations [18]. In [19],
visual inputs were processed using the Soft Actor-Critic (SAC)
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algorithm to generate joint angular velocities to control the
UR5 robotic arm. The Deep Deterministic Policy Gradient
(DDPG) algorithm was also employed for successful trajectory
tracking of a small moving target using a free-floating dual-
arm space robot [20]. To enhance the efficiency and precision
of exploration in DRL, an ensemble-based version of Proximal
Policy Optimization (PPO) was proposed [21]. Similarly, a
hybrid strategy was developed by incorporating the inverse
kinematics of a fixed-base robot as a prior policy, guiding the
agent towards more optimal decisions [22]. By incorporating
the geometric relationships among the robotic arm’s links and
constraining the end-effector’s velocity, the reward function
was adjusted to prevent potential collisions during motion
[23]. A hierarchical control system has also been designed,
where the high-level policy manages collision-free trajectory
planning for the end-effector’s pose, and the low-level policy
decomposes each pose into two sub-tasks: position and orien-
tation [24]. Further studies have extended this approach to the
end-to-end control of flexible arms, addressing more complex
dynamics in space robotics [25], [26].

While these studies have demonstrated the potential of DRL
for space robotics, they typically assume a high level of
autonomy on the remote robot, which is unrealistic given the
current state of technology. In practice, the majority of intelli-
gence resides on the master end, which introduces significant
challenges for RL-based control due to communication delays
and bandwidth limitations.

Recently, progress has been made in addressing the delay
problem in RL, which can be categorized based on the avail-
ability of additional information as follows. (1) Methods with
Additional Information. This category leverages extra data
from environments without delays to aid learning in delayed
environments. Techniques include directly imitating expert
policies from delay-free environments [27], utilizing a limited
number of expert trajectories [28], [29], or using delay-free
environment data without direct interaction to learn policies
for delayed settings [30]. (2) Methods without Additional
Information. This category can be further classified into
three approaches. (a) State Augmentation. This approach
constructs an information state by combining the most recent
observed delayed state and action sequence, thereby transform-
ing the original delayed Markov decision process (MDP) into
a new, delay-free MDP [31], [32]. (b) Model Prediction. This
method uses available information to predict the delayed state,
which is incorporated into RL algorithms to make decisions
[33]–[35]. (c) Belief State. In contrast to model prediction,
belief state methods estimate the most informative state for
decision-making based on all available information, rather than
predicting actual states [36]–[38].

Driven by advancements in these methods, this paper is
the first to successfully apply DRL to achieve ground-based
teleoperation of a space robotic arm for capture tasks. First,
a Markov model is developed for the teleoperation process,
providing a theoretical framework for decision-making. Then,
a novel algorithm, Belief State Actor-Critic (BSAC), is pro-
posed, which integrates state augmentation and belief state
techniques in a model-free paradigm, capable of handling both
constant and random delay scenarios. Finally, the algorithm

is tested in the MuJoCo environment, and transferred to a
physical system for real-world validation. The results from
both environments confirm the feasibility and robustness of
the proposed approach.

The main contributions of this paper are as follows:
• A novel agent-based teleoperation framework. We

propose a general framework to replace human operators with
intelligent agents for space robot teleoperation, modeled as an
MDP to support theoretical analysis.
• The Belief State Actor-Critic (BSAC) algorithm. Our

proposed BSAC algorithm combines state augmentation and
belief state techniques to handle both constant and random
time delays, ensuring robustness and adaptability in teleoper-
ation tasks.
• General Markov modeling for space robotic decision-

making. We design key elements of the MDP, including the
state space and reward function, to better guide agents in com-
pleting tasks, forming a foundation for effective experimental
validation.
• Validation in simulation and real-world system. The

BSAC algorithm is validated through strategy training in
MuJoCo simulations and demonstrates its efficiency and ro-
bustness on a real-world physical system.

This paper is structured as follows. Section II outlines the
background, including the kinematics of space robots and
their modeling as a Markov process. Section III details the
methodology, analyzing the time-delay issues in teleoperation
and developing the BSAC algorithm to mitigate the impact of
delays. Section IV presents the validation and analysis of the
proposed framework and algorithm, using both simulation and
real-world systems. This paper is concluded in Section V with
directions for future work.

II. BACKGROUND

A. Kinematics of space robots

A space robotic system typically consists of a spacecraft
(base) and a manipulator with n degrees of freedom (DOF).
The vector of joint angles of the manipulator is denoted as
q = [θ1, θ2, · · · , θn]T , with the corresponding joint velocities
represented as q̇. Additionally, (vi, wi)

T (i = b, e) represent
the velocities of the base and the robotic arm, respectively.
Following [39], we can derive the following equation:(

ve
ωe

)
= Jb

(
vb
ωb

)
+ Jmq̇, (1)

where Jb and Jm are the Jacobian matrices of the base and the
manipulator, respectively. In the absence of external forces or
torques, the space robot operates in free-floating mode and its
linear momentum P and angular momentum L are conserved.
Therefore, it holds that:(

P
L

)
= Hb

(
vb
ωb

)
+Hbmq̇, (2)

where Hb and Hbm are inertia matrix and coupling inertia
matrix, respectively. Assuming the initial values of P and L
are both zero, the velocity of the base can be expressed as:(

vb
ωb

)
= −H−1

b Hbmq̇ = Jbmq̇, (3)
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where Jbm is the Jacobian matrix of the base. Substituting
Eq. (3) into Eq. (1) yields the following expression:(

ve
ωe

)
= (JbJbm + Jm)q̇ = Jgq̇, (4)

where Jg is referred to as the generalized Jacobian matrix,
which is associated not only with kinematic parameters but
also with dynamic parameters.

B. Reinforcement learning for space robots
RL is a sequential decision-making process grounded in the

theoretical framework of MDP. Typically, an MDP is defined
by a six-element tuple (S ,A ,P,R, ρ, γ), where S and A
represent the state space and action space, respectively; P is
the state transition function and R denotes the reward function,
while ρ represents the initial distribution of states; γ signifies
the discount factor for future rewards. At time step t, the
agent observes the environmental state st. Subsequently, based
on its current policy π, it selects an action at ∼ π(·|st) to
apply to the environment. The environment then returns a new
state st+1 ∼ P(·|st, at) along with a reward rt = R(st, at).
The objective of reinforcement learning is to maximize the
cumulative reward Gt =

∑T
k=t γ

k−trk to obtain an optimal
policy π∗(·|st), where T is the maximum number of steps the
agent interacts with the environment in an episode.

The teleoperation process of the space robotic arm is
modeled as an MDP. Specifically, the state space, action space,
and reward function are defined as follows.
• State space S
Given the critical importance of the state information in

guiding the agent’s decisions, it is essential to incorporate as
many relevant features as possible when designing the state
representation. During task execution by the space robot, key
factors include the joint angles q ∈ Rn, joint angular velocities
q̇ ∈ Rn, end-effector pose pe ∈ R6 and velocity ve ∈ R6,
target pose ptarget ∈ R6, and the distance d ∈ R between the
end-effector and the target. Particularly in free-floating mode,
the non-holonomic constraints between the robot’s base and
its manipulator can significantly influence motion planning.
Hence, the base pose pb ∈ R6 and base velocity vb ∈ R6 are
also essential components of the state space. Accordingly, the
state design for the fixed-base mode is as follows:

st = (q, q̇, pe, ve, ptarget, d) ∈ R2n+19; (5)

For the free-floating mode, the state is represented as:

st = (q, q̇, pe, ve, pb, vb, ptarget, d) ∈ R2n+31. (6)

• Action space A
The actions are defined as the torques applied to the joints of

the robotic arm, with its dimensionality corresponding to the
degrees of freedom of the joints. Specifically, the action at ∈
Rn satisfies ati ∈ [−max(τi),max(τi)], where i = 1, · · · , n,
and τi represents the torque applied to the i-th joint.
• Reward function R
The reward function rt at each time step consists of three

parts: task reward rtask(t), constraint reward rconstraint(t),
and terminal reward rterminal(t), as defined below:

rt = rtask(t) + rconstraint(t) + rd(t), (7)

rtask(t) = ω1dt + ω2 log(dt + 1× 10−6), (8)

rconstraint(t) =ω3∥at–at−1∥+ ω4 (∥(ve)t∥+ ∥(vb)t∥)
+ δ(check collision)Cobs,

(9)

rd(t) = δ(t < T )δ(dt ≤ dthreshold)× C, (10)

where the δ(·) is the indicator function, δ(check collision)
indicates whether a collision occurs, Cobs is the penalty for
such collisions and dthreshold is the maximum allowable
distance between the end-effector and the target for successful
capture. The three rewards serve the following purposes: (1)
rtask(t) is related to the capture task. ω1dt encourages the end-
effector of the robotic arm to approach the target as closely
as possible, while ω2 log(dt + 1 × 10−6) prevents the end-
effector from stalling near the target by ensuring continuous
progress even when the distance is close to the threshold;
(2) rconstraint(t) is associated with constraints. ω3∥at–at−1∥
ensures that the applied torques remain smooth during the
execution of actions, ω4 (∥(ve)t∥+ ∥(vb)t∥) limits the velocity
of the space robot’s end-effector and base to avoid excessive
motion, and δ(check collision)Cobs penalizes collisions of
the robotic arm; (3) rd(t) defines the terminal reward, which
provides a constant reward C if the task is completed within
T and the distance to the target is below the threshold.

III. METHOD

This section provides an in-depth analysis of the challenges
posed by time delays in space teleoperation. It also presents
a novel model-free DRL algorithm, the Belief State Actor-
Critic (BSAC), which employs state augmentation and belief
state techniques to mitigate the negative effects of delays on
decision-making.

A. Time delays in teleoperation

As shown in Figure 1, delays caused by factors such as data
transmission, processing, and inference disrupt the Markov
property of the original sequential decision-making process,
significantly degrading the performance of RL algorithms. In
this work, we propose replacing human operators with intel-
ligent agents to carry out space teleoperation tasks. At each
time step, the agent makes decisions based on the information
received from the environment and its current policy. However,
a delay occurs between when the agent issues a command
and when the remote environment receives and acts on it.
This delay, referred to as action delay [31], is denoted as da.
Additionally, once the remote space robot processes the action,
there is another delay in sending the feedback to the agent,
known as observation delay [31], denoted as do. The entire
process is illustrated in Figure 2.

Ideally, the total delay in this loop is d = do + da, known
as the round-trip delay (RTD), which is assumed to be con-
stant. However, network congestion and other environmental
factors can introduce variability, modeled as a random delay
following a uniform distribution with parameter ξ, denoted as
drandom ∼ Uniform(ξ). The actual delay at any time step is
then expressed as dtotal(t) = d + drandom(t). At time t, the
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Fig. 2. Agent-based space teleoperation framework. The diagram illustrates
two primary delays in the system: observation delay do and action delay da.
These delays cause a lag in the space robot’s actions relative to the agent’s
decisions by da, and a lag in the agent’s observations relative to the space
robot’s feedback by do.

Fig. 3. Explanation of Random Delay Scenarios. The delay consists of both
fixed and random components, causing variations in observation times at both
ends. When multiple states occur at different times at the Master End, only
the most recent state is observed, while the others are discarded.

state generated by the remote space robot is represented by
st, while the state observed by the agent is represented by ot.

For instance, assuming d = 1 and ξ = 1, an example
of random delay is shown in Figure 3. At t = 0 , with
dtotal(0) = 1, the agent does not observe the state at t = 0,
and instead observes s0 at t = 1, leading to o0 = Φ and
o1 = s0. Similarly, at t = 1, dtotal(1) = 2, and at t = 2,
dtotal(2) = 1, implying that the agent does not observe the
state at t = 2. Consequently, both s1 and s2 may be observed
at t = 3. However, outdated states are typically discarded, so
the state observed at t = 3 would be s2, resulting in o3 = s2.
Remark 1. To facilitate the subsequent description of the
algorithm’s state space, the delay at any given time t, where
t starts from 0, is defined as follows:

zt =


t+ 1, if t < d,

zt−1 + 1, if ot = Φ and t ≥ d,

d, otherwise.
(11)

Remark 2. When ξ = 0, this corresponds to the constant
delay scenario. In this case, for the first d time steps, the
agent does not observe any information, i.e., ot = Φ, where
Φ represents an empty or unobserved state. After the initial

delay, the agent begins observing the state with a lag of d time
steps, represented as:

ot =

{
Φ, if t < d,

st−d, otherwise.
(12)

Remark 3. In the following experiments, unless otherwise
specified, the default assumption is that da = do = d/2.

B. Solutions to time delays

To effectively mitigate the impact of delays in space tele-
operation, we propose the BSAC algorithm, which combines
state augmentation and belief state techniques.

Part 1. State Augmentation
The core idea is to utilize the delayed state and historical ac-

tion sequences to construct an augmented information state,
enabling the transformation of the original delayed MDP into
a delay-free MDP [31]. In the context of space teleoperation,
the key components are defined as follows:
• State space X
The augmented state is represented as:

xt =


Φ, if ot = Φ and t < d,

(ot−zt , at−d, · · · , at−1), if ot = Φ and t ≥ d,

(ot, at−d, · · · , at−1), otherwise,
(13)

which will be used to determine the agent’s action at time t.
• Action space A
This follows the same definition as in Section II-B.
• State transition function P
At time t, the state xt follows the new state transition

function xt ∼ P(·|xt−1, at).
• Reward function R
To account for the delay process, and based on Eq. (7), the

reward function is defined as:

R(t) =

{
0, if ot = Φ,

r(xt, at), otherwise.
(14)

• Initial state distribution ζ
The new initial state distribution is given by:

ζ(x0) = ρ(s0)

d−1∏
i=0

δ(ai − ci), (15)

where ρ(s0) is the original initial state distribution, and
{ci}d−1

i=0 represents random actions taken by the operator
without state feedback from the remote environment.

Part 2. Belief State
The agent’s objective function in RL is typically defined as:

J (π) =
T∑

t=0

E(xt,at)∼D [r(xt, at)] , (16)

where D is the distribution of states and actions obtained from
either a replay buffer or previously sampled data. The goal
is to optimize this objective function to derive an optimal
policy. However, due to the complexity of end-to-end space
teleoperation tasks, optimizing Eq. (16) often leads to policies
that can get stuck in local optima, making it difficult to
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find policy parameters that yield high cumulative rewards.
To address this issue, the objective function is modified as
follows:

J (π) =
T∑

t=0

E(xt,at)∼D [r(xt, at) + αH(π(·|xt))] , (17)

where H(π(·|xt)) denotes the entropy of the policy, and α is
a coefficient that controls the balance between the reward and
the entropy term. This modification not only encourages more
effective exploration but also helps manage the stochasticity
of the optimal policy.

As discussed in Part 1, the dimensionality of the state
space increases from dim(S ) to dim(S )×dim(A )d, where
d is the delay. This exponential increase in dimensionality
not only expands the policy search space but also imposes
greater demands on storage, computation, and the volume of
interaction samples, leading to what is commonly known as the
“curse of dimensionality.” In [38], for constant delay scenarios,
the problem was addressed by employing belief projection
of the augmented state, rather than directly calculating the
Q/V values for the augmented state. Following this approach,
we propose the BSAC algorithm to manage scenarios with
random delays in space teleoperation, effectively overcoming
the significant challenges posed by time delays.

During the policy evaluation phase, the soft Bellman oper-
ator is formulated as follows based on Eq. (17):

T Q(xt, at) −→Ep(st|xt)[R(st, at)] + γExt+1∼P,at+1∼π[

Q(xt+1, at+1) + αH(π(·|xt+1))],
(18)

where p(st|xt) represents the probability of transitioning from
the augmented state to the current belief state. The “curse
of dimensionality” arises from evaluating state-action pairs
(xt, at) in high-dimensional spaces. However, for each aug-
mented state xt, there exists a corresponding low-dimensional
belief state st in the training phase. Thus, we can approximate
the Q-value as:

Q(xt+1, at+1) ≈ Ep(st+1|xt+1)[Q(st+1, at+1)], (19)

where Q(·, ·) denotes the Q-value corresponding to the belief
state. To estimate the belief state action-value function, we
minimize the following objective:

JQ = Ext∼ζ,at∼π[Ep(st|xt)[Q(st, at)]−Q(xt, at)]
2. (20)

Substituting Eq. (18) and Eq. (19) into the above equation, we
obtain:

JQ =Ext∼ζ,at∼π[Ep(st|xt)[Q(st, at)−R(st, at)]−
γExt+1∼P,at+1∼π[Ep(st+1|xt+1)[Q(st+1, at+1)]+

αH(π(·|xt+1))]]
2.

(21)

In the policy improvement phase, the optimal policy is typ-
ically obtained by minimizing the KL-divergence associated
with the augmented state xt, as shown below:

argminπDKL

π(·|xt) ||
exp(Ep(st|xt)

[
Qπold

(st, ·)
]
)

Zπold(xt)

 .

(22)

Algorithm 1 Belief State Actor-Critic for Teleoperation
1: Initialize network parameters θ and ϕ, target networks,

temporary buffer B, replay buffer D.
2: for each iteration do
3: for t ∈ [0, d− 1] do
4: at ∼ random(−τmax, τmax).
5: ot ← delayed env(at).
6: Store at and non-null ot in B.
7: end for
8: for t ∈ [d, T ] do
9: get xt from B.

10: at ∼ πϕ(xt).
11: (ot,R(t))← delayed env(at).
12: if ot = Φ then

ot = xt [: dim(S )].
13: end if
14: Store at and ot in B.
15: if t > 2d then
16: get xt−d, ot−d, at−d, xt−d+1, ot−d+1 from B.
17: D ← D∪{(xt−d, ot−d, at−d, rt−d, xt−d+1, ot−d+1)}.
18: end if
19: end for
20: Sample data from D and update θ and ϕ by gradient

descent to optimize Eq. (24) and Eq. (25).
21: end for

As proven in [38], Eq. (22) can be transformed into a KL-
divergence related to the belief state:

argminπEp(st|xt)

[
DKL(π(·|xt)||

exp(Qπold

(st, ·))
Zπold(st)

)

]
,

(23)
the corresponding proof can be found in the appendix A.

Therefore, in both the policy evaluation and improvement
stages, the Q-value estimation shifts from being based on the
augmented state to being based on the belief state.

We then train the actor and critic using neural networks,
with parameters θ and ϕ, respectively. The corresponding Eq.
(21) and Eq. (23) are reformulated as:

JQ(θ) =E(xt,st,at,rt,xt+1,st+1)∼D[
1

2
(Qθ(st, at)− rt

− γEat+1∼π[Qθ(st+1, at+1) + αH(π(·|xt+1))])
2],

(24)
and

Jπ(ϕ) = E(xt,st)∼D[Eat∼ϕ[αlogπ(at|xt)−Qθ(st, at)]].
(25)

By iteratively minimizing these two objective functions, we
can obtain the actor and critic networks optimized for space
teleoperation.

The pseudocode of the algorithm is shown as Algorithm 1.

IV. EXPERIMENTS

This section details the experiments designed to validate
the effectiveness and robustness of the BSAC algorithm. It
includes the experimental setup, comparative studies, and
further discussions on normal and special scenarios.
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Fig. 4. System Introduction. (a) Hardware System; (b) Manipulator Configuration; (c) Simulation System.

TABLE I
KINEMATIC AND DYNAMIC PROPERTIES.

Link No. Shape Inertial properties

0
(base) Box, length 0.7 m = 60

I = diag(10, 9, 11)

1
Cylinder, r = 0.05, l = 0.123

m = 6.6
I = diag(1, 1, 0.28)Cylinder, r = 0.0365, l = 0.3

Cylinder, r = 0.05, l = 0.12

2
Cylinder, r = 0.05, l = 0.108

m = 2.456
I = diag(1, 1, 0.14)Cylinder, r = 0.0325, l = 0.307

Cylinder, r = 0.043, l = 0.1116

3
Cylinder, r = 0.043, l = 0.113 m = 0.96

I = diag(1, 1, 0.0068)Cylinder, r = 0.0375, l = 0.144

* All data are presented in standard units.

A. Experiment setup

Experiment System. The hardware system is shown in
Figure 4(a) and Figure 4(b), with the parameters of the links
and joints listed in Tables I and II, all using standard units.
Additionally, we installed four pneumatic feet at the base
to achieve free-floating capabilities for the space robot via
pneumatic buoyancy. To validate our algorithm, we adopt
a strategy where the policy is first trained in a simulation
environment before being transferred to the real system. Ac-
cordingly, we developed a space robot simulator using the
MuJoCo physics engine, referred to as “FreeFloating-v0”, as
shown in Figure 4(c). Furthermore, considering the hardware
control frequency of 1 kHz and the time required for the agent
to make and execute decisions, the simulation time step is set
as Tm = 0.04 s per step. The maximum number of steps per
episode is T = 250, corresponding to a maximum simulation
duration of T · Tm = 10 seconds.

Task description. The radius of the robotic arm’s end
effector is 0.0375 m, and the radius of the target point
is assumed to be 0.01 m. We define a threshold distance
dthreshold = 0.05 m, where the task is considered successfully
accomplished if the distance between the end effector and

TABLE II
JOINT PROPERTIES.

Joint No. Position Range Torque range

1 [−π/2, π/2] [−0.5, 0.5]

2 [−π, π] [−0.5, 0.5]

3 [−π, π] [−0.5, 0.5]

* All data are presented in standard units.

the target is less than this value, satisfying the condition
dthreshold > 0.0375 + 0.01 = 0.0475 m. To enhance model
generalization, the target point is randomly placed within
a rectangular region. Additionally, noise is introduced into
the initial joint angles and velocities to further test the
model’s robustness. Specifically, the initial position of the
base in the world coordinate system is pb = [0, 0, 1], and
the target position is ps = [−0.25 ± 0.15,−0.75 ± 0.15, 1].
The initial joint angles and velocities of the robotic arm are
q0 = [0, 0, 0] and v0 = [0, 0, 0], with added noise defined as
qnoise = [qj1, qj2, qj3] and vnoise = [vj1, vj2, vj3], where qji ∈
Uniform(−π/6, π/6) and vji ∈ Uniform(−0.005, 0.005),
for i = 1, 2, 3. Thus, the initial joint angles and velocities are
set to q = q0 + qnoise and v = v0 + vnoise.

Network architecture. Based on the current hardware sys-
tem and the analysis in Section II-B, the network architecture
consists of two main components: the actor network and the
critic network. Both networks feature two hidden layers, each
with 256 units, and use ReLU as the activation function. The
primary difference between them lies in their input and output
dimensions: the actor network has an input size of 37 and an
output size of 3, while the critic network has an input size
of 37 and an output size of 1. The discount factor γ is set to
0.99, while the replay buffer size is 1,000,000, and the batch
size is 256. The Adam optimizer is employed for training. In
Eq. (8), Eq. (9) and Eq. (10), the weights ω1 to ω4 are set to
-1, -0.1, -0.1, and -0.1, respectively, with a constant C of 100
and a constant Cobs of -1.

Operating platform. All experiments are conducted on
an NVIDIA GeForce RTX 3090 graphics card. The versions
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Fig. 5. Performance comparison of different algorithms in “FreeFloating-v0” on MuJoCo.

Fig. 6. Running times of different algorithms in “FreeFloating-v0” on
MuJoCo.

of Gym, MuJoCo, and PyTorch used in the experiments are
0.21.0, 2.0.2.8, and 1.11, respectively.

B. Results

We compare BSAC against two widely used state-of-the-
art (SOTA) algorithms: (1) a memoryless approach, which
ignores delays and makes decisions based solely on the ob-
served state (referred to as Mapping); (2) a state augmentation
approach using MDP transformation (denoted as SACAS).
All algorithms are SAC-based and evaluated under constant
and random delay conditions with delays of 2, 4, 6, and 8
timesteps. The results, shown in Figure 5, represent the average
performance over three different random seeds. The first four
columns depict the training process, labeled as “scenario-
delay” (with “c” for constant and “r” for random), while the
last column shows the success rate over 100 trials with the
trained models. Additionally, the term “Delay-free“ in Figure
5 refers to the final performance achieved using the SAC

algorithm in a delay-free environment, representing the best
possible performance that the agent can attain.

As illustrated in Figure 5: (1) All algorithms experience a
decline in performance as the delay increases in both constant
and random delay scenarios, indicating that delays, particularly
substantial and random delays, significantly impact the control
of the agent by these algorithms. (2) BSAC outperforms
the other algorithms in both convergence speed and final
returns, achieving near delay-free performance and higher
success rates across all delay scenarios. SACAS shows stable
performance under constant delays, maintaining a success rate
around 0.5, but its performance degrades significantly with
increasing random delays. Mapping performs poorly in all
scenarios, essentially failing to learn a useful strategy; (3)
BSAC performs better in constant delay scenarios compared to
random ones, although the performance drop in random delay
scenarios is minimal. These results highlight the robustness
and effectiveness of BSAC.

C. Discussion on normal scenarios

This section compares the time consumption of different
methods, analyzes performance with fixed round time delay
with different delay pairs, and evaluates the trained strategy
under varying bass masses, all under normal conditions.

Time complexity. Using the same experimental setup as
in Section IV-A, we measure the training times of all three
algorithms across various scenarios and averaged the results,
as shown in Figure 6. It is clear that Mapping has the shortest
training time, followed by SACAS, with BSAC taking slightly
longer. The increased time for BSAC can be attributed to the
additional processing required for handling both augmented
and corresponding true states. However, given BSAC’s supe-
rior performance over the other algorithms, this extra time is
well justified.

Fixed round time delay with different delay pairs. In all
previous experiments, we evenly divide the constant delay d
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Fig. 7. Returns of BSAC with fixed round time delay and varying observation
delays.

TABLE III
COMPARISON OF VARYING MASS OF THE BASE.

Base mass 60 (original) 30 45 75 90

Success rate 0.95 0.75 0.89 0.92 0.94

* All data are presented in standard units.

into observation delay do and action delay da. To investigate
whether varying these delays significantly impacts algorithm
performance, we conduct experiments with d = do + da = 6,
varying the observation delay do across values of 0, 1, 2, 3, 4,
5, and 6. The results, presented in Figure 7, reveal that the final
returns across all scenarios hover around 75 and the highest
average returns occur when do is 0 or 2, the latter exhibiting
greater variance. This suggests that, with d held constant, the
specific values of do and da have a minimal effect on final
returns, consistent with the conclusions drawn in [31]. This
phenomenon can be further elucidated by noting that when d
remains constant, the state and corresponding actions remain
unchanged, leading to relatively stable performance.

Varying Mass. In real-world applications, the mass of
a space robot’s base can fluctuate due to factors such as
fuel consumption or payload changes, potentially impacting
the effectiveness of pre-trained policies. To evaluate BSAC’s
robustness under varying mass conditions, we use the mass
parameters from Section IV-A, training a policy with a con-
stant delay of 6. We then test this policy in scenarios where
the base mass is adjusted to 30, 45, 75, and 90 kg (with
corresponding changes to inertia), conducting 100 trials for
each configuration. The success rates are summarized in Table
III. The results indicate that when the base mass is reduced
(30 kg and 45 kg), the success rates are noticeably lower
than those in the original environment. However, when the
base mass exceeds the original (75 kg and 90 kg), the success
rates remain similar or even match the original performance.
This suggests that when the mass is lower, the nonlinear
holonomic constraints between the base and the robotic arm
lead to stronger dynamic coupling in the free-floating scenario,
degrading the policy’s performance. Conversely, with a heavier
base, the arm’s movements exert less influence on the base,
which remains more stable, allowing the policy to maintain its

TABLE IV
COMPARISON OF PERIODIC JOINT FAILURE.

Faulty joint
No. Duration T1 Success Rate Average Step

1
5 0.94 120.48±39.66
10 0.75 147.49±64.63
15 0.65 166.25±67.55

2
5 0.95 129.9±35.76
10 0.89 168.36±47.44
15 0.45 212.08±55.14

3
5 1.0 121.48±22.6
10 0.97 131.92±33.23
15 0.98 139.46±30.19

1,2,3
5 0.98 141.34±30.22
10 0.91 181.53±41.19
15 0.18 247.31±15.97

TABLE V
COMPARISON OF RANDOM JOINT FAILURE.

q Success Rate Average Step

0.2 0.94 135.53±39.16
0.5 0.88 188.05±42.38
0.8 0.08 249.36±14.83

efficacy despite the dynamic coupling.

D. Discussion on special scenarios

This section analyzes the application of BSAC in specific
scenarios, including joint faults, communication failures, task
generalization, and real-system validation. Unless specified
otherwise, all subsequent experiments are conducted with a
delay of 6, where the previously learned strategies are directly
transferred to the new scenarios.

Joint Failures. Two joint failure modes are considered:
periodic and random.

In the periodic mode, a joint receives torque commands
from the agent but remains inactive (applying zero torque) for
a period T1 every T0 steps. We set T0 = 20 and T1 = 5, 10, 15
for testing. Experiments are conducted under two conditions:
(a) a single joint failure and (b) failure of all three joints.
The results are summarized in Table IV. The findings indicate
that: (1) The impact of joint failures and failure durations
varies across joints, with the BSAC algorithm demonstrating
significant robustness to these failures. (2) The first two joints
play a more critical role in task completion compared to
the third joint, consistent with the arm’s configuration. (3)
Interestingly, for T1 = 10, the success rate is lower when
one of the first two joints fails compared to when all three
joints fail simultaneously. However, the average number of
steps per trial shows the opposite trend. This can be explained
by joint coupling: when all three joints fail, the arm tends
to maintain a posture closer to its pre-failure state, requiring
more time for decision-making. In contrast, when only one
joint fails, the arm’s configuration deviates from the optimal
posture, reducing the success rate.

In the random mode, each joint fails with a fixed probability
q at every step. When functional, the joint executes the
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TABLE VI
COMPARISON OF NOISY OBSERVED DATA.

δ 0(original) 0.005 0.01

Success Rate 0.95 0.91 0.88
Average Step 126.89±37.4 129.37±47.09 136.14±53.59

δ 0.015 0.02 0.025

Success Rate 0.84 0.68 0.62
Average Step 153.16±54.64 171.15±63.61 178.18±68.43

TABLE VII
COMPARISON OF PACKET LOSS WITH DIFFERENT RATES.

p Success Rate Average Step

0.2 0.94 129.07±33.79
0.5 0.92 136.71±34.49
0.8 0.87 143.98±51.21
1.0 0.0 250.0±0.0

commanded torque; otherwise, it remains inactive with zero
torque. Experiments are conducted with q = 0.2, 0.5, 0.8, and
the results are summarized in Table V. The results show that
as q increases, task performance deteriorates. However, even
with a failure probability of q = 0.5, the BSAC algorithm
maintains a success rate close to 90%, demonstrating strong
robustness to this type of fault.

Communication Failures. This part covers three scenarios:
signal distortion, packet loss, and communication interrup-
tions.

(1) Signal Distortion: Observation noise caused by factors
such as sensor and transmission is modeled as Gaussian noise,
s∆(t) ∼ N (0, δ2), with δ = 0.005, 0.01, 0.015, 0.02, 0.025.
The observed state becomes snoise(t) = st + s∆(t). For each
δ, 100 trials are conducted, recording task success rates and the
average number of steps per trial. Results are shown in Table
VI. The data indicates that Gaussian noise impacts policy
performance, with larger noise leading to greater degradation.
However, even with δ = 0.015, the agent achieved an 80%
success rate, and with δ = 0.025, the success rate remained
above 60%, with only 60 additional steps compared to the
noise-free environment.

(2) Packet Loss: To simulate packet loss, communication
packets are randomly dropped with a probability p. When a
packet is lost, the agent relies on the most recent observation
for decision-making. The trained policy is directly tested under
packet loss scenarios (p = 0.2, 0.5, 0.8, 1.0), with results
summarized in Table VII. The results show that even with a
packet loss rate of p = 0.8 , the success rate remained at 87%,
dropping to 0 only when p = 1.0. This reflects the robustness
of the BSAC-learned policy, indicating smooth and predictable
system operation despite significant packet loss.

(3) Communication Interruptions: Communication interrup-
tions are modeled by introducing periodic blackouts, where
communication is interrupted for T1 steps every T0 steps.
During these interruptions, the agent relied on the most recent
observation. Policies trained are tested with T0 = 20 and
T1 = 5, 10, 15, 20. Results are summarized in Table VIII.
As shown in table, BSAC effectively handles communication

TABLE VIII
COMPARISON OF DIFFERENT COMMUNICATION INTERRUPTIONS.

T1 Success Rate Average Step

5 0.94 128.17±39.96
10 0.89 146.46±47.73
15 0.81 162.48±54.06
20 0.0 250.0±0.0

TABLE IX
COMPARISON OF NOISY ACTION DATA.

δ 0(original) 0.1 0.2

Success Rate 0.95 0.94 0.91
Average Step 126.89±37.4 127.42±34.9 130.01±38.71

δ 0.3 0.4 0.5

Success Rate 0.91 0.88 0.85
Average Step 137.61±34.37 148.61±38.76 160.11±39.49

interruptions. The results demonstrate smooth and stable con-
trol of the space robot, with minimal variance in the robot’s
motion during interruptions. By relying on recent observations,
the agent continues making reasonable decisions, albeit with
slightly longer task completion times. Once accurate state
information is received, BSAC promptly generates precise ac-
tions, enabling the robot to quickly resume optimal operation.

Task Generalization. This part encompasses three scenar-
ios: action execution noise, gradual base mass reduction, and
obstacle avoidance tasks.

(1) Action Execution Noise: During action execution, sensor
errors can introduce noise into the actions. This is typically
modeled as Gaussian noise a∆(t) ∼ N (0, δ2), where δ takes
values of 0.1, 0.2, 0.3, 0.4, and 0.5. The executed action
is then anoise(t) = at + a∆(t). For each δ, we conducted
100 trials and all results are presented in Table IX. Although
action noise affected performance, its impact is less significant
compared to observation noise, as shown in Table VI. This
can be attributed to the fact that the BSAC actor network
relies on states for decision-making, and while robust, accu-
rate state representations are essential for optimal decisions.
Additionally, real robotic systems often impose constraints
on control inputs, clipping actions that exceed certain limits,
whereas Gaussian noise in observations remains unrestricted.
The results also indicate that larger action noise increases task
completion times. For instance, with δ = 0.2 and δ = 0.3,
success rates are identical, but the latter required more steps
to complete the task.

(2) Gradual Base Mass Reduction: During task execution,
fuel consumption can lead to a gradual decrease in the base’s
mass. We simulated this by reducing the base’s mass by m%
of its current value every 10 steps within a single trial, with
m = 2, 4, and 6. The results are summarized in Table X. The
data show that changes in base mass have minimal impact on
the task success rate. This robustness is due to the state space
in BSAC being independent of mass, making the algorithm
resilient to mass variations. However, the average number of
steps per trial increases with greater mass reduction, reflecting
the added coupling between the base and the robotic arm,
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TABLE X
COMPARISON OF GRADUAL BASE MASS REDUCTION.

m Success Rate Average Step

2 0.95 125.39±38.43
4 0.92 135.47±37.21
6 0.91 147.03±41.76

Fig. 8. Obstacle scenario. Two spherical obstacles near the target point
interfering with robotic arm grasping.

which affects the agent’s decision-making.
(3) Obstacle Avoidance Tasks: The new obstacle scenario

is illustrated in Figure 8. We initially transferred the previ-
ously trained policy to the obstacle avoidance task without
considering obstacle checks. The results, shown in Figure 9,
indicate poor performance as the initial policy did not account
for obstacles and thus failed to complete the task. To adapt
the framework to this new task, we redesigned the reward
function by incorporating a collision penalty, as shown in Eq.
(9), in addition to the original components. The results of the
retraining, presented in Figure 10, demonstrate that with the
updated reward function, BSAC successfully guides the agent
to avoid obstacles while completing the task with a smooth
trajectory and minimal time, even in delayed environments.
This highlights the adaptability and effectiveness of BSAC,
further reinforcing its potential for a wide range of space
teleoperation applications.

Real-System Validation. The real physical experiments
are conducted on a smooth stone surface, with the dynamic
parameters of the base and robotic arm specified in Section
IV-A. To enable the free-floating capability of the space
robot, we equip the base with four pneumatic feet. During
the experiments, these feet control gas ejection to generate
sufficient lift, effectively countering gravity. To simulate delay
effects, we implement a waiting function on the agent side
to introduce a deliberate delay in the agent’s state after the
specified time.

In the MuJoCo environment, the policy trained in a scenario
with a delay of 6 is successfully transferred to the real system,
as shown in Figures 11 and 12. Specifically, during the first
six time steps, the agent, lacking observable information,
opts to take no action, which results in the robotic arm
remaining stationary. This is evident in Figure 11(a), where
the arm is at its zero position, and in Figure 12(a), where
the distance between the arm’s end effector and the target
remains unchanged. Once the agent begins to receive data,
the end effector gradually approaches the target, successfully

completing the task at t = 48. This progression is clearly
illustrated in Figures 11(b) to 11(e) and Figure 12(a).

Additionally, Figures 12(b) and 12(c) represent the varia-
tions in the base’s position and attitude throughout the process.
Figure 12(b) indicates slight movement of the base in the x-y
plane, while the z-axis exhibits minimal change. Figure 12(c)
reveals that the base experiences negligible rotation about the
x and y axes, with most rotation occurring around the z-axis.
This demonstrates that during the approach to the target, the
agent adeptly manages variations in the base’s position and
attitude, achieving the task with minimal adjustments while
maintaining movement as close to a plane as possible.

V. CONCLUSION

In this paper, we address the inherent limitations of human
operators in space teleoperation by introducing the Belief
State Actor-Critic (BSAC) algorithm, which leverages deep
reinforcement learning. This research represents a pioneering
effort to employ an agent for remote operation in space
capture tasks. We begin by modeling the space teleoperation
process as a Markov decision process, thereby establishing
a theoretical foundation for deeper analysis. We then present
BSAC, which synergistically combines state augmentation and
belief state techniques to mitigate the impact of delays in
remote operations. Finally, we validate the effectiveness and
robustness of our approach through extensive modeling and
training in the MuJoCo physics engine, followed by empirical
testing in real-world environments.

Future research directions could focus on three primary
areas: (1) enhancing the robustness and real-world applica-
bility of the control framework in actual space or equivalent
environments by combining domain randomization with adap-
tive control strategies, (2) integrating multimodal information
to enhance the agent’s decision-making capabilities, such as
text and visual information [40], and (3) incorporating human
intervention within the current framework to facilitate human-
agent collaboration in scenarios where the agent encounters
challenges.

APPENDIX

The derivation process from Eq. (22) to Eq. (23) is as
follows:

DKL

π (·|xt) ||
exp

(
Ep(st|xt)

[
Qπold

(st, ·)
])

Zπold (xt)

 (A.1)

→
∑
at∈A

π(at|xt)

(
logπ(at|xt)− Ep(st|xt)

[
Qπold

(st, ·)
]

+ logZπold

(xt)

)
(A.2)

→
∑
at∈A

π(at|xt)

(
logπ(at|xt)− Ep(st|xt)

[
Qπold

(st, ·)
]

+ Ep(st|xt)

[
logZπold

(st)
])

(A.3)
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(a) t = 6 (b) t = 32 (c) t = 48 (d) t = 65 (e) t = 89

(f) t = 121 (g) t = 153 (h) t = 177 (i) t = 210 (j) t = 250

Fig. 9. Results of the direct policy transfer.

(a) t = 6 (b) t = 20 (c) t = 36 (d) t = 51 (e) t = 69

(f) t = 87 (g) t = 103 (h) t = 118 (i) t = 130 (j) t = 154

Fig. 10. Results of the retraining with collision penalty.

(a) t = 6 (b) t = 18 (c) t = 32 (d) t = 40 (e) t = 48

Fig. 11. Different stages of the space robot grasping task in the real system.
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(b) Position changes of the base.
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(c) Attitude changes of the base.

Fig. 12. Position and attitude changes of the space robot components during target capture.
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→ Ep(st|xt)

[∑
at∈A

π(at|xt)

(
logπ(at|xt)−Qπold

(st, ·)

+ logZπold

(st)

)
(A.4)

→ Ep(st|xt)

DKL(π(·|xt)||
exp

(
Qπold

(st, ·)
)

Zπold(st)

 (A.5)

Eq. (A.1) is expanded using the KL-divergence, which
directly leads to Eq. (A.2). Since logZπold

(st) and
Ep(st|xt)

[
logZπold

(st)
]

are independent of the policy π, fur-
ther derivation yields Eq. (A.3). Next, by interchanging the
summation and the expectation, Eq. (A.4) is obtained. Finally,
applying the definition of KL-divergence, we arrive at Eq.
(A.5).

REFERENCES

[1] Q. Gao, J. Li, Y. Zhu, S. Wang, J. Liufu, and J. Liu, “Hand gesture
teleoperation for dexterous manipulators in space station by using
monocular hand motion capture,” Acta Astronautica, vol. 204, pp. 630–
639, 2023.

[2] W. Pryor, B. P. Vagvolgyi, A. Deguet, S. Leonard, L. L. Whitcomb,
and P. Kazanzides, “Interactive planning and supervised execution for
high-risk, high-latency teleoperation,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2020, pp.
1857–1864.

[3] W. Zhang, F. Li, J. Li, and Q. Cheng, “Review of on-orbit robotic arm
active debris capture removal methods,” Aerospace, vol. 10, no. 1, p. 13,
2022.

[4] W. Doggett, “Robotic assembly of truss structures for space systems
and future research plans,” in Proceedings, IEEE Aerospace Conference,
vol. 7. IEEE, 2002, pp. 7–7.

[5] X. Wang, W. Xu, B. Liang, and C. Li, “General scheme of teleoperation
for space robot,” in 2008 IEEE/ASME International Conference on
Advanced Intelligent Mechatronics. IEEE, 2008, pp. 341–346.

[6] X. Zhang and J. Liu, “Autonomous trajectory planner for space
telerobots capturing space debris under the teleprogramming frame-
work,” Advances in Mechanical Engineering, vol. 9, no. 9, p.
1687814017723298, 2017.

[7] J. Funda, T. S. Lindsay, and R. P. Paul, “Teleprogramming: Toward
delay-invariant remote manipulation,” Presence: Teleoperators & Virtual
Environments, vol. 1, no. 1, pp. 29–44, 1992.
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